hunring hum

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

Institut für Biochemische Pflanzenphysiologie

Masterarbeit

Heterologe Expression und Reinigung der Pyruvat-Phosphat Dikinase (PPDK) aus der C4 Pflanze *Flaveria trinervia*

Zur Erlangung des akademischen Grades Master of Science (M. Sc.) - Biochemistry

vorgelegt von B. Sc. Alexander Ralph Michael Minges (1804535)

im September 2012

Erstprüfer: Univ. Prof. Dr. G. Groth Institut für Biochemische Pflanzenphysiologie Heinrich-Heine-Universität Düsseldorf

Zweitprüfer: Univ. Prof. Dr. H. Gohlke Institut für Pharmazeutische und Medizinische Chemie Heinrich-Heine-Universität Düsseldorf Meinen Eltern

Inhaltsverzeichnis

Abkürzungsverzeichnis 6					
Ał	Abstract 8				
Ζι	Isam	menfas	sung	9	
1.	Einl	eitung		10	
	1.1.	Struktu	urelle Funktionalität der PPDK	10	
	1.2.	Funkti	on in C_4 -Pflanzen	12	
	1.3.	Funkti	on in C_3 -Pflanzen	14	
	1.4.	Funkti	on in nicht-pflanzlichen Organismen	15	
	1.5.	Kälteir	naktivierung	16	
	1.6.	Zielset	zung	18	
2.	2. Material und Methoden 19				
	2.1.	Materi	al	19	
		2.1.1.	Geräte und Hilfsmittel	19	
		2.1.2.	Verbrauchsmaterialien	20	
		2.1.3.	Chemikalien	20	
		2.1.4.	Standards für Proteine und Nukleinsäuren	21	
		2.1.5.	Antikörper	21	
		2.1.6.	Kommerzielle Kits	21	
		2.1.7.	Restriktionsenzyme	22	
		2.1.8.	Bakterienstämme	22	
		2.1.9.	Synthetische Oligonukleotide	22	
		2.1.10.	Plasmide	22	
		2.1.11.	Kulturmedien	23	
		2.1.12.	Puffer für die Agarose-Gelelektrophorese	23	
		2.1.13.	Puffer für die SDS-PAGE	23	
		2.1.14.	Puffer und Lösungen für den Westernblot	24	
		2.1.15.	Puffer für den Zellaufschluss	24	

		2.1.16.	Puffer und Lösungen für die Reinigung	25
		2.1.17.	Puffer für die CD-Spektroskopie	25
		2.1.18.	Puffer für den Aktivitätstest	26
	2.2.	Molekı	ılarbiologische Methoden	26
		2.2.1.	Konzentrationsbestimmung von Nukleinsäuren	26
		2.2.2.	Isolierung von Plasmid-DNA	26
		2.2.3.	Restriktionsverdau von DNA	27
		2.2.4.	Agarose-Gelelektrophorese zur Auftrennung von DNA	27
		2.2.5.	Extraktion von DNA aus Agarosegelen	28
		2.2.6.	Polymerase-Kettenreaktion	28
		2.2.7.	Sequenz und Ligase unabhängige Klonierung (SLIC)	31
	2.3.	Mikrob	piologische Methoden	32
		2.3.1.	Transformation in <i>E. coli</i>	32
		2.3.2.	Stammhaltung	32
		2.3.3.	Heterologe Expression in <i>E. coli</i>	32
	2.4.	Präpara	ative Methoden	33
		2.4.1.	Zellaufschluss	34
		2.4.2.	Proteinaufreinigung durch Affinitätschromatographie	34
		2.4.3.	Konzentrierung von Proteinlösungen	35
		2.4.4.	Entsalzung von Proteinlösungen	35
		2.4.5.	Lagerung von PPDK-Konzentraten	36
	2.5.	Analyt	ische Methoden	36
		2.5.1.	Differentielle Zentrifugation	36
		2.5.2.	Größenauschlusschromatographie	37
		2.5.3.	SDS-Polyacrylamidgelelektrophorese	37
		2.5.4.	Kolloidale Coomassie-Färbung	38
		2.5.5.	Westernblot und immunologischer Nachweis von Proteinen	38
		2.5.6.	Konzentrationsbestimmung von Proteinen	40
		2.5.7.	Circulardichroismus-Spektroskopie	40
		2.5.8.	Aktivitätstest	41
	2.6.	Bioinfo	ormatische Methoden	42
		2.6.1.	Analyse von Circulardichroismus (CD)-Spektren	42
		2.6.2.	Alignment von Nuklein- und Aminosäuresequenzen	42
		2.6.3.	Erstellung von Homologiemodellen	43
3.	Erge	bnisse		44
	3.1.	Klonie	rung	44
	3.2.	Expres	sionsstudien	47
	3.3.	Differe	ntielle Zentrifugation	49

	3.4.	Native Reinigung der PPDK	50
	3.5.	CD-Spektroskopie	53
	3.6.	Aktivitätstest	55
	3.7.	Homologiemodelle	58
4.	Disk	ussion	63
	4.1.	Expression und Reinigung der PPDK	63
	4.2.	Aktivität der gereinigten PPDK	65
	4.3.	Homologiemodelle	66
	4.4.	Ausblick	68
Ab	bildu	Ingsverzeichnis	70
Tal	bellei	nverzeichnis	71
Lit	eratu	rverzeichnis	72
A.	Anh	ang	82
	A.1.	Nuklein- und Aminosäuresequenzen	82
	A.2.	Evalutation der Homologiemodelle	89
B.	Dan	ksagung	91
C.	Erkl	ärung	92

Abkürzungsverzeichnis

2YT	2×Yeast extract and Tryptone (engl.)
AA/BAA	Acrylamid/Bisacrylamid
ADP	Adenosindiphosphat
AK	Adenylatkinase
AMP	Adenosinmonophosphat
APS	Ammoniumperoxodisulfat
ΑΤΡ	Adenosintriphosphat
BSA	Bovines Serumalbumin
CBB-G250	Coomassie-Brilliant-Blau G-250
CD	Circulardichroismus
C. symbiosum	Chlostridium symbiosum
dCTP	Desoxycytidintriphosphat
ddH ₂ O	Doppelt destilliertes Wasser
DNA	Desocyribonukleinsäure
DOPE	Discrete Optimized Protein Energy (engl.)
DTT	Dithiothreitol
EDTA	Ethylendiamintetraessigsäure
E. coli	Escherichia coli
F. trinervia	Flaveria trinervia
F. brownii	Flaveria brownii
HRP	Meerrettich-Peroxidase, engl. horseradish peroxidase
IDA	Iminodiessigsäure
IMAC	Immobilisierte Metallionen Affinitätschromatographie
IPTG	Isopropyl-β-D-thiogalactopyranosid

Abkürzungsverzeichnis

MDH	Malatdehydrogenase	
ME	Malatenzym	
NADH	Nicotinamidadenindinukleotid	
NAD-MDH	NAD-abhängige Malatdehydrogenase	
NaN_3	Natriumazid	
OD	Optische Dichte	
PAGE	Polyacrylamidgelelektrophorese	
PCR	Polymerase-Kettenreaktion	
PDRP	PPDK regulierendes Protein	
PEP	Phosphoenolpyruvat	
PEPCase	Phosphoenolpyruvat-Carboxylase	
PMSF	Phenylmethylsulfonylfluorid	
PPDK	Pyruvat-Phosphat Dikinase	
rcf	relative centrifugal force (engl.)	
RMSD	root mean square deviation (engl.)	
RuBisCO	Ribulose-1,5-bisphosphat-carboxylase/-oxygenase	
SDS	Natriumdodecylsulfat	
SLIC	Sequenz und Ligase unabhängige Klonierung	
SOPMA	Self-optimized prediction method (engl.)	
TAE	Tris-Acetat-EDTA	
TBS	Tris-buffered saline (engl.)	
ТВТ	Tris-buffered Tween (engl.)	
TEMED	Tetramethylethylendiamin	
TEV	Tobacco etch virus (engl.)	
Tris	Tris(hydroxymethyl)-aminomethan	
UV	Ultraviolett	

Abstract

The objective of this work was the heterologous expression and purification of the pyruvate, phosphate dikinase (PPDK) from *Flaveria trinervia* (*F. trinervia*) and to provide evidence for its functional folding by conducting an activity assay.

Codon-optimized DNA was cloned in an expression vector derived from pET-16b. Cells of the *Escherichia coli* (*E. coli*) strain BL21 (DE3) were subsequently transformed using this vector and used for the expression of the Pyruvat-Phosphat Dikinase (PPDK). The expressed protein was purified using its His-tag for an affinity chromatography. Yields of up to 118 mg L^{-1} culture could be achieved in high purity.

The functional folding of the expressed PPDK was tested measuring CD spectra in combination with a coupled enzyme assay in which pyruvate, ATP and inorganic phosphate react to phosphoenolpyruvate (PEP), AMP and pyrophosphate. Using this assay, the kinetic parameters of the heterologous expressed PPDK from *F. trinervia* could be obtained: the K_m were measured as $(50 \pm 9) \mu M$ (ATP) and $(270 \pm 44) \mu M$ (pyruvate), the specific activity was $(0.99 \pm 0.09) \text{ U mg}^{-1}$.

As a result of a size exclusion chromatography it could be shown that certain fractions of the purified PPDK were monodisperse and hence suitable for crystallization experiments.

In conclusion, the PPDK from *F. trinervia* could be successfully expressed and purified to a high degree. Furthermore the purified protein was active and hence folded natively.

Zusammenfassung

Ziel dieser Arbeit war es, die heterologe Expression der Pyruvat-Phosphat Dikinase (PPDK) aus *Flaveria trinervia* (*F. trinervia*) in *Escherichia coli* (*E. coli*), sowie ein Reinigungsprotokoll zu etablieren und die Funktionalität über einen Aktivitätstest nachzuweisen.

Hierfür wurde Codon optimierte DNA des für die PPDK kodierenden Genabschnitts in einen aus pET-16b abgeleiteten Expressionsvektor kloniert. Mit diesem wurde der *E. coli*-Stamm BL21 (DE3) transformiert und die PPDK in diesem exprimiert. Die heterolog exprimierte PPDK wurde im Anschluss über einen Histidin-Tag affinitätschromatographisch gereinigt. Es wurden hierbei hohe Ausbeuten von bis zu 118 mg L⁻¹ Kulturmedium erzielt.

Die Funktionalität des gereinigten Proteins wurde mittels einer Circulardichroismus (CD)-Spektroskopie in Kombination mit einem Aktivitätstest überprüft, beim dem Pyruvat, ATP und anorganisches Phosphat zu Phosphoenolpyruvat (PEP), AMP und Pyrophosphat umgesetzt werden. Auf diese Weise wurden für die heterolog exprimierte PPDK aus *F. trinervia* ein K_m von $(50 \pm 9) \,\mu$ M (ATP) bzw. $(270 \pm 44) \,\mu$ M (Pyruvat), sowie eine spezifische Aktivität von $(0,99 \pm 0,09) \,\text{U}\,\text{mg}^{-1}$ bestimmt.

Durch eine Größenausschlusschromatographie konnte gezeigt werden, dass bestimmte Fraktionen der der gereinigten PPDK monodispers vorliegen und sich somit für Kristallisationsexperimente eignen.

Zusammenfassend konnte die PPDK aus *F. trinervia* erfolgreich in *E. coli* exprimiert und zu einem hohen Grad gereinigt werden. Die gereinigte PPDK zeigte eine Aktivität, was auf eine funktionelle und somit wahrscheinlich native Faltung hindeutet.

Die Pyruvat-Phosphat Dikinase (PPDK, EC 2.7.9.1) gehört zur Enzymklasse der Phosphotransferasen (Kinasen) und katalysiert die frei reversible Reaktion:

 $Pyruvat + ATP + Pi \Longrightarrow PEP + AMP + PPi$

Erstmals beschrieben wurde die PPDK von Hatch u. Slack (1968); Reeves (1968) in tropischen Gräsern und der parasitären Amöbe *Entamoeba histolytica* (Chastain et al., 2011). Strukturdaten der PPDK sind verfügbar aus *Clostridium symbiosum* (1,94 Å; Herzberg et al. (1996)), *Zea mays* (2,3 Å; Nakanishi et al. (2005)) und *Trypanosomas brucei* (3,0 Å; Cosenza et al. (2002)).

1.1. Strukturelle Funktionalität der PPDK

Die PPDK kann auf Grund von Sequenzhomologien, sowie funktionellen Überlegungen und Strukturdaten in drei Domänen unterteilt werden:

- 1. Nukleotid-Bindedomäne (AS 1-380)
- 2. Zentrale Phosphohistidin-Domäne (AS 381-516)
- 3. PEP/Pyruvat-Bindedomäne (AS 517-871)

Innerhalb der N-terminalen Nukleotid-Bindedomäne formen 240 Reste eine so genannte *ATP grasp*, während 340 Reste innerhalb der C-terminalen PEP/Pyruvat-Bindedomäne ein *TIM barrel*-Motiv bilden. Die Nukleotid-Bindedomäne wurde über Sequenzhomologien zu bekannten ATP-bindenden Proteinen identifiziert,

die PEP/Pyruvat-Bindedomäne über kristallographische Strukturdaten in Anwesenheit von des Substratanalogons Phosphonopyruvate (Herzberg et al., 2002).

Abbildung 1.1.: Struktur der PPDK aus *Zea mays* (PDB: 1VBH). Farblich abgesetzt sind die Nukleotid-Bindedomäne (grün), PEP/Pyruvat-Bindedomäne (blau) mit dem Substrat PEP und einem Mg²⁺-Ion, die Phosphohistidin-Domäne (gelb), sowie die Linker-Peptide (rot). Der katalytische Rest His458 ist durch einen Pfeil hervorgehoben. Die Überlagerung (grau) zeigt die PPDK aus *C. symbiosum* (PDB: 1KBL). Das katalytische His455 ist ebenfalls durch einen Pfeil markiert. Es zeigen sich zwei unterschiedliche Konformationen der zentralen Phosphohistidindomäne.

Verknüpft sind die genannten Domänen über flexible Linker-Peptide. Der Abstand zwischen der Nukleotid-Bindedomäne und der PEP/Pyruvat-Bindedomäne beträgt etwa 45 Å, so dass eine direkte Interaktion der Substrate mit dem katalytisch aktiven Histidinrest in der zentralen Phosphohistidin-Domäne nicht möglich ist. Daher wurde ein so genannter *Domain-Swiveling*-Mechanismus vorgeschlagen, der eine Torsionsbewegung der Phosphohistidin-Domäne postuliert, wodurch die Übertragung der Phosphatgruppen ermöglicht wird (Herzberg et al., 1996; Nakanishi et al., 2005). Das Ausmaß dieser Domänenbewegung ist bei Überlagerung der PEP-gebundenen Struktur aus *Zea mays* und der ungebundenen Struktur aus *C. symbiosum* (Abbildung 1.1) erkennbar.

1.2. Funktion in C₄-Pflanzen

Am besten untersucht ist die Funktion der PPDK in C_4 -Pflanzen. In C_3 -Pflanzen limitiert die Oxygenase-Aktivität der Ribulose-1,5-bisphosphat-carboxylase/-oxygenase (RuBisCO) die Effizienz der Photosynthese bei warmen Umgebungstemperaturen oder Wasserstress. Die genannten Bedingungen führen zum Schließen der Spaltöffnungen in den Blättern, um den Wasserverlust durch Verdunstung zu minimieren. Durch das Schließen der Spaltöffnungen wird aber auch die Diffusion von CO_2 in das Blatt vermindert. Die resultierende Absenkung der CO_2 -Konzentration in den photosynthetisch aktiven Zellen führt zu einer Begünstigung der zur CO_2 -Fixierung konkurrierenden Oxygenaseaktivität der RuBisCO (Sharkey u. Seemann, 1989; Cornic, 2000; Lawlor, 2002). Durch die Fixierung von O_2 statt CO_2 wird entsteht als Zwischenprodukt 2-Phosphoglycolat, welches nicht im Calvin-Zyklus verstoffwechselt werden kann und unter zusätzlichem Energieverbrauch über die Photorespiration in 3-Phosphoglycerat umgesetzt wird.

Die C_4 -Kohlenstofffixierung umgeht dieses Problem durch eine räumliche Trennung von CO_2 -Fixierung und Calvin-Zyklus. Hierdurch kann CO_2 konzentriert werden, was der RuBisCO eine CO_2 reiche Umgebung zur Verfügung stellt und die Oxygenaseaktivität stark reduziert. Die PPDK ist hierbei im Stroma der Chloroplasten der Mesophyllzellen lokalisiert und katalysiert dort die Regeneration des primären CO₂-Akzeptors PEP (Hatch, 2002).

Abbildung 1.2.: C_4 Kohlenstofffixierung nach dem NADP-ME Mechanismus. Dargestellt sind eine Mesophyllzelle (links) und eine Bündelscheidezelle (rechts), sowie die Chloroplasten (grün). CO_2 wird auf PEP übertragen, welches in Malat umgewandelt und in die Bündelscheidezelle transportiert wird. Dort wird CO_2 abgespalten und das entstandene Pyruvat zurück in die Chloroplasten der Mesophyllzelle transportiert, wo PEP durch die PPDK aus Pyruvat regeneriert wird. (Raghavendra u. Sage, 2011)

Es existieren unterschiedliche Varianten der C_4 -Kohlenstofffixierung, welche sich in drei Punkten voneinander unterscheiden (Raghavendra u. Sage, 2011):

- Dem C₄-Körper, der aus den Mesophyllzellen exportiert wird (Malat oder Aspartat)
- Dem C₃-Körper, der aus den Bündelscheidezellen zurück in die Mesophyllzellen transportiert wird (Pyruvat oder Alanin)
- 3. Dem zur Decarboxylierung in den Bündelscheidezellen verwendetem Enzym (NADP- bzw. NAD-abhängiges Malatenzym oder PEP-Carboxykinase)

Abbildung 1.2 illustriert die C₄-Kohlenstofffixierung mit Malat als C₄-Körper, Pyruvat als C₃-Körper und einem NADP-abhängigen Malatenzym, wie sie beispielsweise von Mais oder Zuckerrohr bekannt ist. Allen Varianten gemein ist die zentrale Rolle der PPDK bei der Regeneration des primären CO₂-Akzeptors PEP.

Abbildung 1.3.: Lichtabhängige Aktivierung der PPDK durch reversible Phosphorylierung eines Threoninrestes (Chastain et al., 2011).

Die Regulation der PPDK erfolgt lichtabhängig durch das PPDK regulierendes Protein (PDRP) über die Phosphorylierung eines Threonin-Restes (vgl. Abbildung 1.3) im aktiven Zentrum (Burnell u. Hatch, 1985; Chastain u. Chollet, 2003; Burnell u. Chastain, 2006; Chastain et al., 2011).

1.3. Funktion in C₃-Pflanzen

Über die Funktion der PPDK in C_3 -Pflanzen liegen weitaus weniger gesicherte Erkenntnisse vor. Die PPDK kann ubiquitär in Geweben aus C_3 -Pflanzen nachgewiesen werden, liegt dort aber meist nur in sehr geringen Konzentrationen vor (Chastain u. Chollet, 2003). Dies erschwert die biochemische Charakterisierung von PPDKs aus C_3 -Pflanzen *in vivo*, da die Umsetzung der Substrate, sowie die Produktbildung nicht zuverlässig verfolgt werden können. Zudem wird der Substratumsatz durch konkurrierende Reaktionen der Pyruvat-Kinase und PEP-Carboxykinase maskiert (Chastain et al., 2011). *Knock-out* Linien von *Arabidopsis thaliana* zeigen keinen veränderten Phänotyp, so dass auch hierüber keine Aussage über die Funktion der PPDK in C_3 -Pflanzen möglich ist (Chastain et al., 2011).

Untersuchungen an Mais-Samen, in denen die PPDK in hohem Maße im Cytoplasma des Endosperms exprimiert wird, legen allerdings eine Funktion als ergänzendes Enzym der Glykolyse nahe (Kang et al., 2005; Hennen-Bierwagen et al., 2009). Es wurde postuliert, dass die PPDK durch die von ihr katalysierte, frei reversible Reaktion den Kohlenstofffluss zwischen verschiedenen Biosynthesewegen ausgleicht (Hennen-Bierwagen et al., 2009) und ATP in hypoxischen Bereichen des Endosperms zur Verfügung stellt (Chastain et al., 2006).

1.4. Funktion in nicht-pflanzlichen Organismen

Die PPDK wurde in einigen Archäen, Protozoen und Baterien gefunden, welche in sauerstoffarmen Habitaten leben. Die PPDK hat in diesen Organismen die Rolle eines primären oder sekundären Enzyms der Glykolyse. Die freie Reversibilität der katalysierten Reaktion erlaubt sowohl die Synthese von ATP, als auch die Bildung von PEP im Rahmen der Gluconeogenese (Chastain et al., 2011).

Abbildung 1.4.: Einfluss der PPDK auf die glykolytische ATP-Ausbeute. Durch das Zusammenspiel zwischen AK und PPDK können im Vergleich zur konventionellen Glykolyse drei zusätzliche Moleküle ATP je Glukosemolekül gewonnen werden (nach Chastain et al. (2011)).

Durch synergetische Effekte zwischen Adenylatkinase und PPDK kann die ATP-Ausbeute in der Glykolyse von drei Molekülen ATP je Molekül Glukose auf

fünf Moleküle ATP erhöht werden (Abbildung 1.4). Hierbei kann die Bindungsenergie von Pyrophosphat durch die PPDK zum Aufbau von ATP aus AMP genutzt werden (Huang et al., 2008). Die Reaktion läuft dabei in die Pyruvat-formende Richtung ab.

1.5. Kälteinaktivierung

Eine besondere Eigenschaft der PPDK ist die Kälteinaktivierung. Die funktionelle Form ist ein Tetramer, welches bei Temperaturen unterhalb von 10 $^{\circ}$ C in inaktive Diund Monomere zerfällt (Hatch u. Slack, 1968; Shirahashi et al., 1978; Burnell, 1990). Bei der experimentellen Arbeit mit der PPDK ergibt sich hieraus die Problematik, dass alle Arbeitsschritte bei Raumtemperatur durchgeführt werden müssen, was aber die Anfälligkeit für die Degradierung durch im Zelllysat enthaltene Proteasen erhöht. Durch Erwärmen auf 30 $^{\circ}$ C ist allerdings eine weitgehende Reaktivierung zu erreichen (Burnell u. Hatch, 1985; Ashton et al., 1990).

Die Kältesensitivität ist zwischen verschiedenen Spezies unterschiedlich stark ausgeprägt. Innerhalb der Gattung *Flaveria* weist die PPDK aus *F. trinervia* die höchste Sensitivität auf (vgl. Abbildung 1.5): Nach einer 30 min Inkubation bei 0 °C konnte eine Restaktivität von lediglich 10 % beobachtet werden. Die PPDK aus *F. brownii* wies nach der Kältebehandlung eine Restaktivität von 80 % auf (Burnell, 1990).

Abbildung 1.5.: Kälteinaktivierung der PPDK. Aufgetragen ist die Restaktivität in Abhängigkeit von der Inkubationsdauer bei 0 °C. Die Restaktivität der PPDK aus *F. trinervia* beträgt nach 30 min lediglich 10 % (Burnell, 1990).

Durch Sequenzanalyse und die Generierung chimärer PPDKs konnten gezeigt werden, dass nur drei Aminosäurereste die Kältesensitivität stark beeinflussen. Es handelt sich hierbei um Pro790, Leu806 und Val873 in der PPDK aus *F. brownii* (Ohta et al. (1997); vgl. auch Abbildung A.1). Ohta et al. (1997) postulieren eine erhöhte Affinität der PPDK-Monomere zum zentralen Mg²⁺-Ion, sowie stärkere hydrophobe Wechselwirkungen zwischen den einzelnen Monomeren als Ursache der beobachteten Kältetoleranz durch die oben genannten Reste. Erstere Annahme wird dadurch gestützt, dass PPDKs, welche diese Reste aufweisen gleichzeitig toleranter gegenüber einer Inaktivierung durch chelatierende Substanzen wie EDTA sind (Ohta et al., 1997). Darüberhinaus kann durch Zusatz von Glycerin und reduzierenden Agenzien wie DTT die Aktivität zu einem Großteil erhalten bleiben (Shirahashi et al., 1978).

1.6. Zielsetzung

Die PPDK aus *Zea mays* wurde bereits heterolog in *E. coli* exprimiert (Chastain et al., 1996; Nakanishi et al., 2003) und gereinigt. Ebenfalls etabliert ist ein photometrischer Aktivitätstest über die PEP-Carboxylase und die Malatdehydrogenase (Jenkins u. Hatch, 1985; Salahas u. Manetas, 1990).

Auf diesen Ergebnissen aufbauend war es Ziel dieser Arbeit, ein Expressionsund Reinigungsprotokoll für die PPDK aus *F. trinervia* zu etablieren, sowie nachzuweisen, dass das gereinigte Enzym funktionell gefalten ist. Darüber hinaus sollten Homologiemodelle erstellt werden, um im Vorfeld zukünftiger Experimente die Identifikation funktionell und strukturell bedeutender Reste zu ermöglichen.

2. Material und Methoden

2.1. Material

2.1.1. Geräte und Hilfsmittel

Bezeichnung	Hersteller
Analysen-/Präzisionswaagen	Sartorius, Göttingen
Autoklav	Thermo Fisher Scientific, Bonn
Automatische Pipetten	Gilson, Bad Camberg
CD-Spektrometer J-715	JASCO Corp., Gross-Umstadt
Chromatographiesystem	GE Healthcare, Uppsala, SE
ÄKTAprime plus	
DNA-Gelkammersystem PerfectBlue	PEQLAB Biotechnologie, Erlangen
Elektroblotter PerfectBlue 'Semi-Dry'	PEQLAB Biotechnologie, Erlangen
Gelsysteme für große Gele	Zentralwerkstatt, Uni Düsseldorf
Inkubationsschüttler INNOVA 44R	New Brunswick, Nürtigen
Kühlzentrifuge Avanti J-26 XP	Beckman Coulter, Krefeld
Kühlzentrifuge Eppendorf 5810 R	Eppendorf, Hamburg
Image Analyzer LAS-4000 mini	Fujifilm, Düsseldorf
Magnetrührer MR 3000/3001	Heidolph, Schwabach
Microplate Reader Infinite 200 PRO	Tecan, Crailsheim
Mikrozentrifuge Minispin	Eppendorf, Hamburg
Milli-Q-gradient Wasserfilteranlage	Millipore, Schwalbach
Minishaker MS 2	IKA, Staufen
Rotoren: JA-10, JA-25.50, Type 70.1 Ti	Beckman Coulter, Krefeld
Taumelschüttler Polymax 1040	Heidolph, Schwalbach
Thermomixer compact/comfort	Eppendorf, Hamburg
Ultrazentrifuge Optima L-80 XP	Beckman Coulter, Krefeld
Zellaufschlusssystem 'One-Shot'	Constant Systems, Daventry, UK

Bezeichnung	Hersteller
Chromatographiepapier 3MM Chr	Whatman, Maidstone, UK
Entsalzungssäulen PD10/MidiTrap G-25	GE Healthcare, Uppsala, SE
Falconröhrchen 15 mL und 50 mL	Orange Scientific,
	Braine-l'Alleud, BE
Filter für Ultrazentrifugation "Amicon Ultra"	Millipore, Schwalbach
IMAC-Säule HisTrap HP 5 mL	GE Healthcare, Uppsala, SE
Mikrotiterplatten	Hartenstein, Würzburg
Petrischalen	Hartenstein, Würzburg
Pipettenspitzen	Brand, Wertheim
Reaktionsgefäße 1,5 mL und 2 mL	Greiner-Bio One,
	Frickenhausen
Spritzenvorsatzfilter (0,2 µm)	Merck, Bruchsal

2.1.2. Verbrauchsmaterialien

2.1.3. Chemikalien

Bezeichnung	CAS-Nummer	Hersteller
Agar		Becton Dickinson, Heidelberg
Ampicillin-Natriumsalz	69-52-3	AppliChem, Darmstadt
Bromphenolblau	62625-28-9	Sigma-Aldrich, München
Coomassie-Brilliant-Blau	6104-58-1	Serva, Heidelberg
G-250 (CBB-G250)		
Dikaliumhydrogenphosphat	16788-57-1	Grüssing, Filsum
Dithiothreitol (DTT)	3483-12-3	Sigma-Aldrich, München
Ethylendiamintetraessigsäu-	60-00-4	AppliChem, Darmstadt
re (EDTA)		
Ethanol	64-17-5	VWR, Darmstadt
Glycerin	56-81-5	Carl Roth, Karlsruhe
Hefeextrakt		Becton Dickinson, Heidelberg
Imidazol	288-32-4	AppliChem, Darmstadt
Isopropyl-β-D-	367-93-1	PEQLAB Biotechnologie, Er-
thiogalactopyranosid (IPTG)		langen
Kaliumdihydrogenphosphat	7778-77-0	Grüssing, Filsum
Magnesiumchlorid	7791-18-6	VWR, Darmstadt
Magnesiumsulfat-	10034-99-8	Sigma-Aldrich, München
Heptahydrat		-

Natriumchlorid	7647-14-5	VWR, Damrstadt
Natriumdodecylsulfat (SDS)	151-21-3	Serva, Heidelberg
Natriumhydrogencarbonat	144-55-8	VWR, Darmstadt
Nickelsulfat	10101-97-0	AppliChem, Darmstadt
Pepton		Becton Dickinson, Heidelberg
Phosphorsäure	7664-38-2	Grüssing, Filsum
Phenylmethylsulfonylfluo-	329-98-6	Merck, Bruchsal
rid (PMSF)		
Polysorbat 20 (Tween [®] 20)	9005-64-5	Sigma-Aldrich, München
Rotiphorese [®] Gel 30		Carl Roth, Karlsruhe
Saccharose	57-50-1	Carl Roth, Karlsruhe
Salzsäure	7647-01-0	VWR, Darmstadt
Tris(hydroxyme-	77-86-1	VWR, Darmstadt
thyl)-aminomethan (Tris)		

2.1.4. Standards für Proteine und Nukleinsäuren

Bezeichnung	Hersteller
BSA-Standard (2 mg mL ⁻¹) DNA 1 kb/100 bp Ladder	Qiagen, Hilden New England Biolabs, Frankfurt
PageRuler Protein Ladder (Prestained/Unstained)	Fermentas, St. Leon-Rot

2.1.5. Antikörper

Bezeichnung	Hersteller
Anti-His-HRP	Carl Roth, Karlsruhe

2.1.6. Kommerzielle Kits

Bezeichnung	Hersteller
illustra GFX PCR DNA and Gel Band	GE Healthcare, Uppsala, SE
Purification kit	
QIAprep Spin Miniprep	Qiagen, Hilden
Roti [®] -Quant (Bradford)	Carl Roth, Karlsruhe

BezeichnungHerstellerErkennungssequenz (5' - 3')NdeINew England Biolabs,
FrankfurtCA/TATG
FrankfurtBamHINew England Biolabs,
FrankfurtG/GATCC
Frankfurt

2.1.7. Restriktionsenzyme

2.1.8. Bakterienstämme

Bezeichnung	Hersteller	Genotyp
BL21 (DE3)	Agilent Technologies,	<i>E. coli</i> B F ⁻ <i>ompT</i> $hsdS(r_B^- m_B^-)$
	Waldbronn	$dcm \ gal \ \lambda(\text{DE3})$
BL21 Gold (DE3)	Agilent Technologies,	<i>E. coli</i> B F ⁻ <i>ompT</i> $hsdS(r_B^- m_B^-)$
	Waldbronn	dcm Tet ^r gal λ (DE3) $endA$ Hte
XL1-Blue	Agilent Technologies,	E. coli recA1 endA1 gyrA96 thi-1
	Waldbronn	hsdR17 supE44 relA1 lac [F' pro-
		$AB \ lacI^q \ Z\Delta M15 \ Tn 10 \ (Tet^r)]$

2.1.9. Synthetische Oligonukleotide

Bezeichnung	Sequenz (5' – 3')
pETEV-16b-PPDK-for	CATGAAAACCTGTATTTTCAGGGACATATG
	ACCGCTAAAAAACGCGTGTT
pETEV-16b-PPDK-rev	TCGGGCTTTGTTAGCAGCCGGATCCTCGAG
	TTAAACAATCACTTGGGCGG

2.1.10. Plasmide

Bezeichnung	Hersteller	Marker
pET-16b	Novagen, Darmstadt	Ampicillinresistenz

2.1.11. Kulturmedien

2YT (pH 7,5)

1,6 % (w/v) Pepton 1 % (w/v) Hefeextrakt 0,5 % (w/v) Natriumchlorid

2.1.12. Puffer für die Agarose-Gelelektrophorese

Tris-Acetat-EDTA (TAE)-Puffer (50x)

100 mL EDTA (0,5 м, pH 8) 57,1 mL Essigsäure 242 g Tris ad 1 L ddH₂O

2.1.13. Puffer für die SDS-PAGE

Acrylamid/Bisacrylamid (AA/BAA) (Rotiphorese[®] Gel 30)

30 % Acrylamid 0,8 % Bisacrylamid

Laufpuffer (10×)

0,25 м Tris 1,92 м Glycin 0,5 % (w/v) SDS

Sammelgelpuffer, pH 6,7 (5×)

0,25 м Tris/H₃PO₄ 0,5 % (w/v) SDS

Trenngelpuffer, pH 8,9 (2,5×)

1,875 м Tris/H₃PO₄ 0,25 % (w/v) SDS

Probenpuffer (4×)

30 mм Borsäure 30 mм Tris 0,7 mм EDTA 5 mм Magnesiumchlorid 50 mм DTT 6,7 % (w/v) SDS 16,7 % (w/v) Saccharose 0,16 % (w/v) Bromphenolblau

Färbelösung

0,1 % (w/v) CBB-G250 2 % (w/v) Phosphorsäure 5 % (w/w) Aluminiumsulfat 10 % (v/v) Ethanol

2.1.14. Puffer und Lösungen für den Westernblot

Transferpuffer

25 mм Tris 190 mм Glycin 10 % (v/v) Ethanol

TBS pH 7,5 - 8,0

10 mм Tris/HCl 150 mм Natriumchlorid

ТВТ рН 7,5 - 8,0

20 mм Tris 500 mм Natriumchlorid 0,05 % (v/v) Polysorbat 20

Caseinlösung pH 7,5 - 8,0

1 % (w/v) Casein in TBS 2 mL 2 м NaOH je 500 mL

2.1.15. Puffer für den Zellaufschluss

Aufschlusspuffer

50 mм Tris/HCl, pH 7,5 300 mм Natriumchlorid 10 mм Imidazol 5 mм Magnesiumsulfat 5 mм DTT 10 % (w/v) Glycerin 0,002 % (w/v) PMSF

2.1.16. Puffer und Lösungen für die Reinigung

Nickelsulfatlösung

100 mм Nickelsulfat

Waschpuffer

50 mм Tris/HCl, pH 7,5 300 mм Natriumchlorid 5 mм Magnesiumsulfat 5 mм DTT 10 % (w/v) Glycerin 0,002 % (w/v) PMSF

Elutionspuffer

50 mм Tris/HCl, pH 7,5 300 mм Natriumchlorid 500 mм Imidazol 5 mм Magnesiumsulfat 5 mм DTT 10 % (w/v) Glycerin 0,002 % (w/v) PMSF

Lagerungspuffer

50 mм Tris/HCl, pH 8 10 mм Magnesiumchlorid 0,1 mм EDTA 5 mм DTT 0,002 % (w/v) PMSF

2.1.17. Puffer für die CD-Spektroskopie

CD-Puffer

50 mм Kaliumphosphat pH 7,9 10 mм Magnesiumsulfat

2.1.18. Puffer für den Aktivitätstest

Reaktionspuffer

100 mм Tris/HCl pH 8 10 mм Magnesiumchlorid 2,5 mм Kaliumdihydrogenphosphat 5 mм Natriumhydrogencarbonat 0,1 mм EDTA 5 mм DTT **frisch dazugegeben:** 0,2 mм NADH 1,25 mм ATP 0,8 U Phosphoenolpyruvat-Carboxylase (PEPCase) 2 U NAD-abhängige Malatdehydrogenase (NAD-MDH)

2.2. Molekularbiologische Methoden

2.2.1. Konzentrationsbestimmung von Nukleinsäuren

Nukleinsäuren besitzen aufgrund der aromatischen Basen ein Absorptionsmaximum bei einer Wellenlänge von 260 nm. Die DNA-Konzentration kann daher spektrometrisch durch eine Absorptionsmessung bestimmt werden. Es gilt hierbei:

$$OD_{260} = 50 \,\mu g \, m L^{-1} \, DNA$$
 (2.1)

2 μL der Probe und des verwendeten Puffers werden hierbei auf einer NanoQuant-Platte im Mikroplatten-Lesegerät vermessen und die Konzentration aus der Differenz aus Probe und Puffer gemäß Gleichung 2.1 berechnet.

2.2.2. Isolierung von Plasmid-DNA

Die Isolierung von Plasmiden erfolgte aus 5 mL Übernachtkulturen mit Hilfe des "QIAprep[®] Spin Miniprep"-Kits nach Herstellerangaben. Die isolierte Plasmid-DNA wurde in 10 mм Tris/HCl pH 8,5 bei bei −20 °C gelagert.

2.2.3. Restriktionsverdau von DNA

Im Zuge der Klonierung wurde der Zielvektor pET-16b über die beiden Restriktionsenzyme *BamH*I und *Nde*I linearisiert. Der Verdau erfolgte in einem Ansatzvolumen von 25 μ L bei 37 °C über einen Zeitraum von 2 h.

Ansatz Restriktionsverdau

4 μg Vektor-DNA 3 μL NEBuffer 4 (New England Biolabs, Frankfurt) 10 U *BamH*I 10 U *Nde*I ad 25 μL ddH₂O

2.2.4. Agarose-Gelelektrophorese zur Auftrennung von DNA

Zur Auftrennung von DNA-Fragmenten nach ihrer Größe wurde die Agarose-Gelelektrophorese eingesetzt. Hierbei wandern die durch das Phosphatrückrat negativ geladenen Nukleinsäuren im elektrischen Feld durch ein Agarose-Gel zur Anode. Die Wanderungsgeschwindigkeit ist hierbei abhängig von der Größe, es resultiert eine entsprechende Auftrennung im Gel.

Eine 1 %ige (w/v) Lösung von Agarose in TAE-Puffer wurde etwa 1 cm hoch auf den Gelträger der Elektrophoresekammer gefüllt, mit Ethidiumbromid in einer Endkonzentration von $0.5 \,\mu g \, m L^{-1}$ versetzt und durch Schwenken homogen verteilt.

Das erstarrte Gel wurde anschließend mit TAE-Puffer überschichtet und mit $5 \,\mu$ L Marker, sowie den zu analysierenden Proben beladen. Die Laufzeit betrug bei 150 V 30 min bis 45 min.

Die Dokumentation der DNA-Banden erfolgte fotografisch im UV-Transilluminator.

2.2.5. Extraktion von DNA aus Agarosegelen

Die Extraktion von DNA aus Agarosegelen erfolgte mit dem "illustra GFX PCR DNA and Gel Band Purification Kit" nach Herstellerangaben.

2.2.6. Polymerase-Kettenreaktion

Mit Hilfe der Polymerase-Kettenreaktion (PCR) können Nukleinsäurefragmente gezielt vervielfältigt werden. Die Spezifität der Reaktion ist hierbei durch die Auswahl der eingesetzten Primer gegeben. Eine PCR gliedert sich grundsätzlich in drei aufeinanderfolgende Phasen: Während der Denaturierung bei 95 °C wird der Doppelstrang in die beiden Einzelstränge aufgespalten. Das Annealing bei 50 °C bis 60 °C führt zur Anlagerung der Primer an die komplementären Sequenzabschnitte der Einzelstränge des Templates. Die exakte Temperatur ist hierbei von den Schmelztemperaturen der eingesetzten Primer abhängig. Während der Elongationsphase erfolgt die Synthese neuer Komplementärstränge ausgehend von den Primern durch eine DNA-Polymerase. Durch eine mehrfache Wiederholung kann die Ziel-DNA in kurzer Zeit exponentiell vervielfacht werden.

Herstellung von Inserts für die SLIC

Die Synthese von Inserts für eine Sequenz und Ligase unabhängige Klonierung (SLIC) (vgl. 2.2.7) wurde mittels einer PCR nach untenstehendem Ansatz durchgeführt. Als Primer kamen die in 2.1.9 aufgeführten Oligonukleotide zum Einsatz. Diese wurden so gewählt, dass jeweils 30 bp zum Zielvektor und 20 bp zum Zielgen homolog waren.

PCR-Ansatz

1 μL DNA (Templat) 2 μL 3'-Primer (10 μм) 2 μL 5'-Primer (10 μм) 5 μL Pwo-Puffer "complete" 0,5 μL Pwo-Polymerase (1 U μL⁻¹, peqlab, Erlangen) 0,5 μL dNTPs (10 mм) ad 50 μL ddH₂O

Temperatur [°C]	Zeit [min]	Zyklen
95	5	
95	1	10
46	1	10
72	5	
95	1	
65	1	20
72	5	
95	10	1

Tabelle 2.3.: Cyclerprogramm für die Synthese von Inserts zur SLIC

Das verwendete Cyclerprogramm ist in Tabelle 2.3 aufgeführt. Bei der Berechnung der Annealing-Temperatur wurde im Fall der ersten zehn Zyklen die Schmelztemperatur des zum PPDK-kodierenden Bereich homologen Primerabschnitts zu Grunde gelegt. In den letzten zwanzig Zyklen die Schmelztemperatur des zum Zielvektor homologen Primerbereichs.

Kolonie-PCR

Zur Überprüfung des Klonierungserfolges wurden zufällig ausgewählte Kolonien mittels einer Kolonie-PCR untersucht. Hierzu wurden je Kolonie $5 \,\mu\text{L} \, dd\text{H}_2\text{O}$ in einem PCR-Gefäß vorgelegt. Mit einem sterilen Zahnstocher wurde eine Kolonie gepickt, in das vorgelegte Wasser getaucht und anschließend zum Animpfen eines 5 mL Kulturröhrchens mit 2YT-Medium verwendet.

Kolonie-PCR-Ansatz

1 μL T7-Pro-Primer (10 μM) 1 μL T7-Ter-Primer (10 μM) 2,5 μL 10x Thermo-Pol-Puffer (New England Biolabs, Frankfurt) 0,5 U Taq-Polymerase (5 U μL⁻¹, New England Biolabs, Frankfurt) 0,25 μL dNTPs (10 mM) ad 25 μL ddH₂O

Die Kolonie-PCR wurde dann gemäß des in Tabelle 2.4 dargelegten Programms durchgeführt.

Temperatur [°C]	Zeit	Zyklen
95	5 min	
95	30 s	20
48	30 s	50
72	2 min 40 s	
72	5 min	1

Tabelle 2.4.: Cyclerprogramm für die Kolonie-PCR

2.2.7. Sequenz und Ligase unabhängige Klonierung (SLIC)

Die SLIC (Li u. Elledge, 2007) macht sich die Exonukleaseaktivität der T4-DNA-Polymerase zu Nutze, um 5'-Überhänge zu generieren, welche anschließend in einer enzymunabhängigen Reaktion ligieren.

Der Zielvektor pET-16b wurde zunächst über die Restriktionsenzyme *Nde*I und *BamH*I linearisiert (vgl. 2.2.3). Der linearisierte Vektor wurde anschließend über ein Agarosegel gereinigt und die DNA aus dem Gel gelöst (vgl. 2.2.5). Die für die PPDK kodierende Sequenz wurde wie in 2.2.6 beschrieben amplifiziert und ebenfalls über ein Agarosegel gereinigt. Zur Generierung der 5'-Überhänge wurden 1000 ng Vektor- bzw. Insert-DNA in folgendem Ansatz gedaut:

Ansatz für SLIC-Dau (35 µL)

x μL DNA = 1000 ng DNA 2 μL BSA (1 mg mL⁻¹) 4 μL NEBuffer 2 (New England Biolabs, Frankfurt) 1 U T4-DNA-Polymerase (New England Biolabs, Frankfurt) ad 35 μL ddH₂O

Ziel war ein Dau von etwa 30 bp Länge. Aus der Exonukleaseaktivität der T4-DNA-Polymerase von 10 bp min⁻¹ bei 22 °C ergab sich eine Inkubationsdauer von 40 min. Die Reaktion wurde durch Zugabe von $\frac{1}{10}$ des Ansatzvolumens 10 mm Desoxycytidintriphosphat (dCTP) gestoppt.

In das nachfolgende Annealing wurden 150 ng Vektor-DNA, sowie Insert-DNA (2691 bp) im zweifachen molaren Verhältnis eingesetzt:

SLIC-Annealing (10 µL)

x μ L Vektor-DNA = 150 ng y μ L Insert-DNA = 141 ng 1 μ L T4-Ligase Puffer (New England Biolabs, Frankfurt) ad 10 μ L ddH₂O

Der Ansatz wurde anschließend für 1 h bei 37 ℃ inkubiert. 5 µL der Ansätze wurden für die Transformation von *E. coli* XL1-Blue eingesetzt.

2.3. Mikrobiologische Methoden

2.3.1. Transformation in E. coli

Die Transformation erfolgte mittels einer Hitzeschocktransformation. 50 μ L chemisch kompetenter Zellen wurden auf Eis aufgetaut und mit 1 μ L Plasmid-DNA versetzt. Anschließend wurden die Zellen für 15 min auf Eis inkubiert. Es folgte ein Hitzeschock bei 42 °C von 90 s Dauer. Nach einer erneuten Inkubation auf Eis für 2 min und der Zugabe von 400 μ L 2YT-Medium wurden die Zellen für 1 h unter leichtem Schütteln bei 37 °C im Thermoblock inkubiert.

Der 150 µL des Ansatzes wurde anschließend auf 2YT-Agarplatten mit 100 µg mL⁻¹ Ampicillin ausgestrichen und über Nacht bei 37 °C im Brutschrank inkubiert.

2.3.2. Stammhaltung

Die Stammhaltung erfolgte in 20 %igen Glycerinkulturen bei –80 °C. Hierfür wurden 800 μ L einer Übernachtkultur (vgl. 2.3.3) mit 200 μ L sterilem Glycerin versetzt und eingefroren.

2.3.3. Heterologe Expression in E. coli

Die Transformation kompetenter Zellen erfolgte wie in 2.3.1 beschrieben. Die Anzucht erfolgte in 2YT-Medium mit $100 \,\mu g \, m L^{-1}$ Ampicillin.

Expressionsstudien

Die optimalen Bedingungen zur heterologen Expression der PPDK in *E. coli* wurden durch Expressionsstudien evaluiert, bei denen unterschiedliche Konzentrationen von IPTG zur Induktion verwendet wurden. Es kamen hierbei die *E. coli*-Stämme BL21 (DE3) und BL21 Gold (DE3) zum Einsatz.

Von den Agarplatten (vgl. 2.3.1) wurden Vorkulturen mit einem Volumen von 5 mL im Kulturröhrchen angesetzt. Die Vorkulturen wurden über Nacht bei 37 °C

und 180 rpm im Schütler inkubiert und am folgenden Tag zur Inokulation der Hauptkulturen eingesetzt.

Hierfür wurden 250 mL-Kolben mit Schikane und 100 mL Kulturmedium mit 1 mL der Vorkultur inokuliert und bis zur Induktion bei 37 °C und 180 rpm im Schüttler inkubiert. Die Induktion erfolgte beim Erreichen einer OD_{600} von 0,6 bis 0,8 mit 0,1 mm, 0,5 mm und 1 mm IPTG.

Das weitere Wachstum nach der Induktion erfolgte bei einer Temperatur von 30 °C. Vier Stunden nach der Induktion bzw. am nächsten Tag wurden die Zellen durch Zentrifugation bei 7000 × g für 10 min und 4 °C geerntet.

Präparative Expression

Die heterologe Expression der PPDK in *E. coli* erfolgte mit den in den Expressionsstudien als besonders geeignet explorierten Bedingungen. Als Expressionsstamm kam *E. coli* BL21 (DE3) zum Einsatz.

Von den Agarplatten wurden Vorkulturen mit einem Volumen von 100 mL in unschikanierten 250 mL-Kolben angesetzt. Die Vorkulturen wurden über Nacht bei 37 ℃ und 180 rpm im Schütler inkubiert und am folgenden Tag zur Inokulation der Hauptkulturen eingesetzt.

Hierfür wurden 2 L-Kolben mit Schikane und 500 mL Kulturmedium mit 5 mL der Vorkultur inokuliert und bis zur Induktion bei 37 °C und 180 rpm im Schüttler inkubiert. Die Induktion erfolgte beim Erreichen einer OD_{600} von 0,6 bis 0,8 mit 0,1 mm IPTG.

Das weitere Wachstum nach der Induktion erfolgte bei einer Temperatur von 30 °C. Am nächsten Tag wurden die Zellen durch Zentrifugation bei 7000 × g für 10 min und 4 °C geerntet. Die Zellpellets wurden in 4 g-Aliquots in flüssigem Stickstoff schockgefroren und für weitere Versuche bei –80 °C gelagert.

2.4. Präparative Methoden

Aufgrund der Kältelabilität der PPDK (vgl. 1.5), welche bei der PPDK aus *F. trinervia* besonder ausgeprägt ist (Burnell, 1990), wurden alle Schritte des Zellaufschlusses

und der Reinigung – wenn nicht abweichend angegeben – bei Raumtemperatur durchgeführt.

2.4.1. Zellaufschluss

Ein Aliquot eingefrorener Zellen (siehe 2.3.3) wurde bei Raumtemperatur mit 20 mL Aufschlusspuffer, sowie einer Spatelspitze DNAse I (Roche Diagnostics, Mannheim) versetzt und durch Vortexen resuspendiert. Der Aufschluss erfolgte durch Hochdruckdispersion bei einem Druck von 1,35 kbar und einer Temperatur von 15 ℃.

2.4.2. Proteinaufreinigung durch Affinitätschromatographie

Proteine, die mit einem Poly-Histidin-Tag markiert sind, lassen sich über eine Immobilisierte Metallionen Affinitätschromatographie (IMAC) aus einem Proteingemisch isolieren. Im Rahmen dieser Arbeit wurden HisTrap[®] HP-Säulen mit einem Volumen von 5 mL eingesetzt. Als Säulenmaterial dient quervernetzte Agarose an welche Iminodiessigsäure (IDA) immobilisiert ist. Ni²⁺-Ionen werden von IDA dreifach koordinativ komplexiert, so dass drei Koordinationsstellen für die Interaktion Poly-Histidin-markierter Proteine mit den immobilisierten Ni²⁺-Ionen zur Verfügung stehen. Die Elution der spezifisch an das Säulenmaterial gebundenen Proteine erfolgt über die Zugabe von Imidazol, welches als Strukturanalogon zu Histidin in der Lage ist, dieses kompetitiv aus der Bindung mit Ni²⁺ zu verdrängen. Das nachfolgend beschriebene Reinigungsprotokoll wurde nach Nakanishi et al. (2003); Chastain et al. (1996) adaptiert.

Die wie in 2.4.1 beschrieben aufgeschlossenen Zellen wurden zunächst bei 10 000 × g und 15 °C für 30 min zentrifugiert um Zelltrümmer und *Inclusion-Bodies* zu entfernen. Der Überstand wurde anschließend für 1 h bei 100 000 × g und 15 °C ulrazentrifugiert um lediglich lösliche Proteine im Überstand zu halten und Membranfragmente zu präzipitieren.

Die mit Ni²⁺ beladene Säule wurde zunächst mit 5 CV dd H_2 O und 20 CV Waschpuffer *ohne* DTT gewaschen, um schwach bindende Ni²⁺ von der Säule zu eluieren

und die Bildung von amorphem Nickel bei der nachfolgenden Benutzung der Puffer mit reduzierend wirksamen DTT zu minimieren.

Die Säule wurde mit Waschpuffer äquilibriert und das Zelllysat mit einer Flussrate von 1,5 mL min⁻¹ auf die Säule geladen. Unspezifisch bindende Proteine wurden im Anschluss mit 20 CV Waschpuffer + 50 mM Imidazol von der Säule gelöst. Die Elution der PPDK erfolgte dann mit je 10 CV Waschpuffer + 150 mM, 200 mM und 250 mM Imidazol. Es wurden Fraktionen mit einem Volumen von 5 mL gesammelt und ggf. vereinigt. Zur Detektion der Proteinfraktionen wurde die Absorption bei 280 nm verfolgt.

Nach Abschluss der Reinigung wurde die Säule nach Herstellerangaben gereinigt und neu mit Ni²⁺ beladen.

2.4.3. Konzentrierung von Proteinlösungen

Proteinlösungen wurden durch zentrifugale Ultrafiltration bei 20 °C und 5000 × g aufkonzentriert. Hierbei kamen Konzentratoren mit einer Ausschlussgröße von 30 kDa zu Einsatz.

2.4.4. Entsalzung von Proteinlösungen

Nach der Reinigung wurden Fraktionen, welche die PPDK enthielten mittels Ultrafiltration (vgl. 2.4.3) auf ein Volumen von etwa 2,5 mL eingeengt. Zur Umpufferung des Konzentrats in Lagerungspuffer kam eine PD-10-Säule zum Einsatz. Es handelt sich hierbei um eine Größenauschlusschromatographie-Säule, bei welcher die Proteinanteile der Lösung eine wesentlich geringere Retentionszeit aufweisen, als die gelösten Salzionen und somit mit einem geringeren Volumen von der Säule eluieren.

Die Säule wurde mit 25 mL Lagerungspuffer äquilibriert und anschließend mit der konzentrierten Probe beladen. Anschließend wurde die Differenz des Probenvolumens zu 2,5 mL durch Lagerungspuffer ausgeglichen. Die Elution erfolgte mit 3,5 mL Lagerungspuffer. Die entsalzten Proben wurden erneut aufkonzentriert (vgl. 2.4.3).

2.4.5. Lagerung von PPDK-Konzentraten

Die kurzfristige Lagerung (max. 24 h) entsalzter PPDK-Konzentrate (vgl. 2.4.4) erfolgte nach Zugabe von 1 % iger Natriumazid (NaN₃)-Lösung im Verhältnis 1:1000 bei Raumtemperatur.

Langfristig wurden PPDK-Lösungen nach Zugabe von 20 % (w/v) Glycerin bei −20 °C gelagert.

2.5. Analytische Methoden

2.5.1. Differentielle Zentrifugation

Nach dem Zellaufschluss (vgl. 2.4.1) wurde eine Probe von 10 μ L aus dem Zelllysat als Kontrolle entnommen. Anschließend wurde das Zelllysat bei 2000 × g für 15 min bei 15 °C zentrifugiert. Das resultierende Pellet wurde im gleichen Volumen Aufschlusspuffer unter Zusatz von 0,1 % (w/v) SDS bei Raumtemperatur und unter Rühren rückgelöst.

Sowohl vom Überstand, als auch vom resuspendierten Pellet wurden jeweils weitere Proben von 10 μ L Volumen entnommen. Diese wurden mit 25 μ L SDS-Probenpuffer und 65 μ L ddH₂O versetzt. Alle weiteren Zentrifugationsschritte erfolgten hierzu analog und sind in Tabelle 2.5 aufgeführt.

rcf [× g]	Dauer [min]	Sediment
2000	15	Nicht aufgeschlossene Zellen und Zell-
		trümmer
10000	30	Aggregierte Proteine (Inclusion Bodies)
30000	30	Große Membransysteme und assoziierte
		Proteine
100000	60	Kleine Membransysteme und assoziier-
		te Proteine

Tabelle 2.5.: Zentrifugationsschritte der differentiellen Zentrifugation
2.5.2. Größenauschlusschromatographie

Um die Dispersität der gereinigten PPDK zu bestimmen, wurde ein entsalztes Konzentrat (vgl. 2.4.4) nach der Reinigung mittels IMAC (vgl. 2.4.2) einer analytischen Größenausschlusschromatographie unterzogen. Hierbei dient die Säulenmatrix als Molekularsieb. Höhermolekulare Anteile eluieren hierbei schneller von der Säule, als niedermolekulare Anteile, da letztere in die Poren des Säulenmaterials eindringen können.

In dieser Arbeit wurde eine Superdex 200 5/150 GL-Säule der Firma GE Healthcare (Uppsala, SE) mit einem Säulenvolumen von 3 mL eingesetzt.

Die Säule wurde mit 5 CV Lagerungspuffer äquilibriert und anschließend mit 50 μ L Probe in Lagerungspuffer beladen. Die Detektion erfolgte durch Absorptionsmessung bei 280 nm. Eluiert wurde mit 2 CV Lagerungspuffer bei einer Flussrate von 0,2 mL min⁻¹.

2.5.3. SDS-Polyacrylamidgelelektrophorese

Die Proteinproben wurden auf Polyacrylamid-Gele aufgetragen und dort nach ihrer Masse aufgetrennt (Laemmli, 1970). Durch die Zugabe von Natriumdodecylsulfat (SDS) werden die Proteine denaturiert und mit einer negativen Ladung maskiert, wodurch sie ein einheitliches Ladungs-Masse-Verhältnis aufweisen. Somit ist die Wanderungsgeschwindigkeit im elektrischen Feld allein von der Proteinmasse abhängig. Vor dem Auftragen auf das Geld wurden alle Proben mit 4×-Probenpuffer versetzt. Expressionsproben wurden darüber hinaus für 10 min auf 95 °C erhitzt. Im Falle der Expressionsproben errechnete sich das Auftragungsvolumen für große bzw. kleine Gele nach Gleichung (2.2) und (2.3).

$$V_{\rm groß} \, [\mu L] = \frac{15}{OD_{600}}$$
 (2.2)

$$V_{\text{klein}} \left[\mu L\right] = \frac{15}{OD_{600}} \cdot 0,75$$
 (2.3)

Für die Elektrophorese wurden 10 % ige Gele eingesetzt. Tabelle 2.6 zeigt exemplarisch eine Pipettierschema für drei kleine Gele (9 cm \times 10 cm). Um die Größen-

	Trenngel		Sammelgel	
AA/BAA 30	10,9	mL	2	mL
Trenn-/Sammelgelpuffer	13,2	mL	2,5	mL
ddH ₂ O	8,6	mL	7,4	mL
TEMED	16,5	μL	12,3	μL
APS 10 % (w/v)	112,2	μL	129	μL

Tabelle 2.6.: Pipettierschema für SDS-Gele

zuordnung der Proteinbanden zu gewährleisten, wurden die in 2.1.4 genannten Standards eingesetzt. Bei kleinen Gelen wurde nach dem Beladen für 1 h eine Stromstärke von 35 mA je Gel angelegt. Große Gele liefen über Nacht bei 50 mA.

2.5.4. Kolloidale Coomassie-Färbung

Mit der kolloidalen Coomassie-Färbung nach Kang u. Gho (2002) lassen sich Proteine in Polyacrylamid-Gelen bis zu einer Nachweisgrenze von etwa 1 ng detektieren. Sie ist damit ähnlich sensitiv wie eine Silberfärbung.

Die Gele wurden drei Mal für jeweils 10 min in ddH_2O gewaschen und anschließend für mindestens 2 h in der Färbelösung inkubiert. Nach dieser Zeit sind etwa 90 % der maximalen Farbintensität erreicht (Kang u. Gho, 2002). Eine Entfärbung des Hintergrunds kann durch mehrfaches Waschen mit ddH_2O erreicht werden.

2.5.5. Westernblot und immunologischer Nachweis von Proteinen

Über einen Westernblot können Proteine aus einem SDS-Gel elektrophoretisch auf einen Membran übertragen und dort fixiert werden. Über eine Immunfärbung

2. Material und Methoden

kann anschließend eine Visualisierung der Proteine auf der Membran erfolgen. Im Rahmen dieser Arbeit kam das Semi-Dry-Blotverfahren, sowie eine Nitrozellulosemembran mit einer Porengröße von 0,2 µm zum Einsatz.

Es wurde ein gefärbter Proteingrößenstandard bei Gelen verwendet, welche für einen Westernblot vorgesehen waren. Das Gel wurde für etwa 10 min in Transferpuffer inkubiert. Die Nitrozellulosemembran und, sowie die Filterpapiere wurden ebemfalls kurz mit Transferpuffer getränkt.

Auf die Anode der Blotapparatur wurden zunächst drei Lagen Filterpapier, gefolgt von der Blotmembran, dem Gel sowie drei weiteren Lagen Filterpapier gegeben. Anschließend wurde die Apparatur geschlossen und für 2 h eine Stromstärke von 1 mA cm^{-2} angelegt.

Nach Abschluss des Blotvorgangs wurde die Membran entnommen und 1 h in einer 1 %igen Caseinlösung in TBS auf einem Rotationsschüttler inkubiert. Im Anschluss erfolgten zwei Waschschritte mit TBT und einer mit TBS zu jeweils 10 min.

Die Membran wurde dann zusammen mit einer 1 %igen Caseinlösung in TBS, welche den Anti-His-HRP-Antikörper im Verhältnis 1:10000 enthielt, in Folie eingeschweißt und über Nacht bei 4 °C auf einem Taumelschüttler inkubiert. Am nächsten Tag erfolgten wiederum zwei Waschschritte mit TBT und einer mit TBS zu jeweils 10 min. Der gebundene Antikörper konnte dann über die gekoppelte Meerrettich-Peroxidase (HRP) mit Hilfe eines Chemilumineszenzreagenzes nachweisen. Die HRP oxidiert in Anwesenheit von Wasserstoffperoxid das Substrat Luminol, wobei es zu einer Lichtemission kommt.

Hierfür wurde die Membran in Folie eingeschlagen und mit dem Reagenz überschichtet. Für die Visualisierung wurde ein Lumineszenzdetektor (LAS 4000 mini, Fujifilm) eingesetzt.

2.5.6. Konzentrationsbestimmung von Proteinen

Die Konzentration von Proteinen wurde nach Bradford (1976) bestimmt. Hierzu wurde in einer Mikrotiterplatte 50 μ L einer Verdünnung der zu vermessenden Proteinlösung mit 200 μ L Bradford-Reagenz aus dem Roti[®]-Quant-Kit versetzt. Die Probe wurde für 5 min bei Raumtemperatur inkubiert und die Absorption bei 595 nm gemessen.

Die Berechnung der Proteinkonzentration erfolgte anhand einer mit bovinem Serumalbumin BSA erstellten Kalibriergeraden. Alle Messungen erfolgten in Dreifachbestimmung.

2.5.7. Circulardichroismus-Spektroskopie

Bei der CD-Spektroskopie wird die Wechselwirkung von optisch aktiven Substanzen mit zirkular polarisiertem Licht zu analytischen Zwecken ausgenutzt. Eine links- und eine rechtszirkulare Lichwelle überlagern sich hierbei zu linear polarisiertem Licht. Optisch aktive Substanzen weisen für die links- bzw. rechtszirkulare Komponente unterschiedliche Absorptionskoeffizienten ε_L und ε_R auf, wobei letztlich ihre Differenz $\Delta \varepsilon$ gemessen und als Elliptizität θ angegeben wird – d sei die Schichtdicke und c die Konzentration (Greenfield, 2007):

$$\theta(\lambda) = \Delta \varepsilon \cdot c \cdot d \tag{2.4}$$

Die CD-Spektroskopie kann für die Analyse von Proteinsekundärstrukturen eingesetzt werden. Hierbei werden Spektren im Bereich von 160 nm bis 250 nm aufgenommen. Man macht sich dabei zu Nutze, dass in diesem Bereich die n $\rightarrow \pi^*$ bzw. $\pi \rightarrow \pi^*$ -Übergänge der Peptidbindung liegen. Durch ihre Chiralität reagiert das CD-Spektrum eines Peptids sehr empfindlich auf Änderungen der Sekundärstruktur (Greenfield, 2007). Die Messungen erfolgten in CD-Puffer bei einer Proteinkonzentration von 0,1 mg mL⁻¹. Von den Rohdaten wurde das Pufferspektrum abgezogen und unter Berücksichtigung von Konzentration und Molekulargewicht in molaren CD ($\Delta \varepsilon$) umgerechnet.

2.5.8. Aktivitätstest

Um die Aktivität der gereinigten PPDK zu bestimmten, wurde ein Aktivitätstest (Salahas u. Manetas, 1990) durchgeführt. Hierbei wurde die PEP-Bildung in einem gekoppelten Enzymtest über den NADH-Verbrauch verfolgt. Der geschwindigkeitsbestimmende Schritt ist in diesem Fall die Umsetzung von Pyruvat, anorganischem Phosphat und ATP zu Phosphoenolpyruvat, AMP und Pyrophosphat (2.5). Nachfolgend wird Phosphoenolpyruvat durch die Phosphoenolpyruvat-Carboxylase über eine β -Carboxylierung mit Hydrogencarbonat zu Oxalacetat umgesetzt (2.6). Letzteres wird durch eine NAD-abhängige Malatdehydrogenase zu Malat reduziert (2.7). Die Reaktionsabfolge entspricht somit einem Teil des Reaktionszyklus zur CO₂-Fixierung in C₄-Pflanzen (vgl. 1.2).

$$Pyruvat + ATP + P_i \xleftarrow{PPDK} PEP + AMP + PPi$$
(2.5)

$$PEP + HCO_{3}^{-} \xrightarrow{PEPCase} Oxalacetat + Pi$$
(2.6)

$$Oxalacetat + NADH \xrightarrow{NAD-MDH} Malat + NAD$$
(2.7)

Der NADH-Verbrauch kann photometrisch über die Abnahme der NADH-spezifischen Extinktion bei 340 nm verfolgt werden. Da der Verbrauch eines NADH-Moleküls gleichbedeutend ist mit der Bildung eines PEP-Moleküls durch die PPDK, kann aus dem Verbrauch an NADH direkt auf die Bildungsrate von PEP und somit auf die Aktivität der PPDK geschlossen werden.

Der Reaktionsansatz nach Salahas u. Manetas (1990) wurde mit 0,5 µL gereinigtem und entsalztem PPDK-Konzentrat versetzt (vgl. 2.1.18). Die PPDK-Lösung wurde zuvor für 30 min bei 30 °C inkubiert, um eine möglichst vollständige Aktivierung zu erreichen (Ashton et al., 1990). Die Reaktion wurde durch Zugabe von 2,5 mL einer 100 mM ATP-Lösung (Endkonzentration: 1,25 mM) gestartet und die Extinktion bei 340 nm über einen Zeitraum von 3 min bei 30 °C aufgezeichnet. Der Verbrauch an NADH kann über das Lambert-Beer'sche Gesetz in Gleichung (2.8) aus der gemessenen Extinktion mit Hilfe des molaren Extinktionskoeffizienten für NADH $\epsilon_{340} = 6.3 \cdot 10^3 \text{ m}^{-1} \text{ cm}^{-1}$ (McComb et al., 1976) und der Schichtdicke berechnet werden.

$$E = \epsilon \cdot c \cdot d \tag{2.8}$$

 $\epsilon:$ molarer Extinktionskoeffizient

c: Konzentration

d: Schichtdicke

2.6. Bioinformatische Methoden

2.6.1. Analyse von CD-Spektren

Aufgenommene CD-Spektrem (siehe 2.5.7) wurden mit dem Programmpaket *CD-Pro* (Sreerama u. Woody, 2000), sowie dem Programm *K2D3* (Louis-Jeune et al., 2011) untersucht. Die Analyse erfolgte jeweils in einem Wellenlängenbereich von 190 nm bis 240 nm. Für das Programmpaket *CDPro* wurde die Datenbank SMP56 mit 43 löslichen und 13 Membranproteinen als Grundlage der Vorhersage verwendet. Die berechneten Sekundärstrukturanteile wurden dann mit mit einer *ab initio* Vorhersage, welche mit SOPMA (Geourjon u. Deléage, 1995) berechnet wurde verglichen. Zusätzlich wurden die Sekundärstrukturanteile aus der bereits bekannten PPDK-Struktur aus *Zea mays* herangezogen.

2.6.2. Alignment von Nuklein- und Aminosäuresequenzen

Alignments von Nuklein- und Aminosäuren wurden mit dem Programm *T-Coffee* (Notredame et al., 2000; Wallace et al., 2006; Moretti et al., 2007; Di Tommaso et al., 2011) erstellt. Das Programm *Bowtie 2* (Langmead u. Salzberg, 2012) kam zum Einsatz, um *Reads* aus der Sequenzierung an die Referenzsequenz zu alignieren.

2.6.3. Erstellung von Homologiemodellen

Zur Visualisierung der wahrscheinlichen dreidimensionalen Struktur der PPDK aus *F. trinervia* und zur Vorbereitung zukünftiger Analysen wurden Homologiemodelle erstellt. Diese basieren auf den aus *Zea mays* (PDB: 1VBG/1VBH) und *Chlostridium symbiosum* (PDB: 1KBL) bekannten Extremkonformationen des putativen *Domain-swiveling*-Mechanismus.

Jeweils fünf Homologiemodelle wurden mit dem Programm *Modeller* (Sali u. Blundell, 1993) aus den jeweiligen Templaten und der Primärstruktur der PPDK aus *F. trinervia* (Rosche u. Westhoff, 1990) generiert. Im Falle des von *Zea mays* abgeleiteten Modells wurde als Vorlage die Pyruvat gebundene Struktur verwendet (PDB: 1VBH). Lücken in der dreidimensionalen Struktur wurden anhand der ungebundenen Struktur (PDB: 1VBG) ergänzt. Um die Substratbindetasche möglichst exakt zu nachzubilden, wurde das in der Kristallstruktur 1VBH vorhandene PEP-Molekül, sowie das Mg²⁺-Ion beim Modellieren berücksichtigt.

Die Evaluation der erstellten Modelle erfolgte mit dem Programmpaket *PROCH*-*ECK* (Laskowski et al., 1993, 1996).

3.1. Klonierung

Sie SLIC-Klonierung erfolgte wie in 2.2.7 beschrieben. Zur Erhöhung der Translationsgeschwindigkeit und somit der Expressionsrate lag die für die PPDK kodierende DNA Sequenz Codon optimiert für *E. coli* vor (Ikemura, 1981). Die mittels PCR synthetisierten *Inserts* (vgl. 2.2.6), sowie der linearisierte Vektor (vgl. 2.2.3) wurden zur Reinigung auf ein Agarosegel aufgetragen (vgl. 2.2.4). Es ergab sich das in Abbildung 3.1 gezeigte Auftrennungsmuster.

Abbildung 3.1.: Exemplarischer Ausschnitt aus dem Agarosegel zur Reinigung von linearisiertem Vektor (a) und dem Insert (b) zur SLIC-Klonierung. Aufgetragen wurden 5 μ L 1 kb-Größenstandard (M) und je 20 μ L Probe (V bzw. I). Die erwarteten Größen sind 5720 bp (Vektor) und 2691 bp (Insert).

Sowohl Vektor als auch Insert lagen innerhalb der erwarteten Größenordnung (5720 bp bzw. 2691 bp), so dass beide wie in 2.2.7 beschrieben in den Ligationsan-

satz gegeben wurden. Zur Amplifikation des Vektors wurden dann *E. coli* Zellen des Stamms XL1-Blue mit diesem transformiert (vgl. 2.3.1) und auf Agarplatten angezogen. Mit einer Kolonie-PCR (vgl. 2.2.6) wurde überprüft, ob der untersuchte Klon das korrekte Insert trägt. Das enstsprechende Gelbild ist in Abbildung 3.2 dargestellt.

Abbildung 3.2.: Agarosegel nach Kolonie-PCR. Es wurden 5 μ L 1 kb-Größenstandard (M) und je 20 μ L Probe aufgetragen. Untersucht wurden 24 Klone, von denen fünf (10, 13, 22, 23 und 24) ein Plasmid mit der korrekten Größe tragen.

Von untersuchten 24 Klonen wiesen fünf ein Plasmid auf, welches ein Insert der erwarteten Größe von 2691 bp trägt. Die fünf positiven Klone wurden in 5 mL Kulturrörchen über Nacht angezogen und die Plasmid-DNA mit dem *QIAprep Spin Miniprep Kit* nach Herstellerangaben extrahiert. Proben der isolierten Plasmid-DNA wurden zur Sequenzierung eingeschickt (StarSEQ GmbH, Mainz). Es konnte gezeigt werden, dass das aus Klon #22 isolierte Plasmid im für die PPDK kodierenden Bereich keine Mutation trägt. Eine Plasmidkarte von pETEV-16b-ppdk ist in Abbildung 3.3 aufgeführt.

Abbildung 3.3.: Plasmidkarte von pETEV-16b-ppdk. Der für die PPDK kodierende Bereich liegt zwischen Position 5392 und 8022. *Upstream* befinden sich die kodierenden Sequenzen für die TEV-Schnittstelle und den Hexa-Histidin-Tag. Die Plasmidkarte wurde mit *PlasMapper* (Dong et al., 2004) erstellt.

3.2. Expressionsstudien

Die Expressionsstudien (vgl. 2.3.3) zeigten eine deutliche Überexpression der PPDK in *E. coli* BL21 (DE3) bei einer Temperatur von 30 °C und einer IPTG-Konzentration von 0,1 mM (vgl. Abbildung 3.4). Der direkte Vergleich zwischen den beiden verwendeten Expressionsstämmen BL21 (DE3) und BL21 Gold (DE3) (Abbildung 3.5) zeigt eine deutlich stärkere Überexpression in BL21 (DE3) bei gleichzeitig geringerer IPTG-Konzentration. Eine Expression über Nacht führte zu einer deutlich höheren Proteinausbeute im Vergleich zu einer Zellernte nach 4 h. Die Identifizierung der PPDK erfolgte durch einen Westernblot (vgl. 2.5.5).

Abbildung 3.4.: SDS-PAGE der Expressionsstudien. Aufgetragen wurden Proben der beiden Expressionsstämme BL21 (DE3) und BL21 Gold (DE3) bei Induktion mit unterschiedlicher IPTG-Konzentration und einer Temperatur von jeweils 30 °C. Angegeben sind die Zeitpunkte der Probenentnahme vom Zeitpunkt der Induktion an. Der Größenbereich der PPDK ist rot hervorgehoben.

Abbildung 3.5.: Vergleich der Expression in BL21 (DE3) und BL21 Gold (DE3). SDS-PAGE (a) und Westernblot (b). Aufgetragen wurden Expressionsproben nach 0 h und 4 h nach Induktion, sowie über Nacht. Verglichen wurden die Expressionsreihen mit dem jeweils besten Expressionsergebnis in BL21 (DE3) bzw. BL21 Gold (DE3). Die Induktion erfolgte mit 0,1 mm bzw. 1 mm IPTG.

3.3. Differentielle Zentrifugation

Im Rahmen der Expressionsstudien wurden Zellen von *E. coli* BL21 (DE3) nach 4 h bzw. nach einer Übernachtexpression geerntet, aufgeschlossen und einer differentiellen Zentrifugation unterzogen (vgl. 2.5.1). Die Proben wurden mittels eines Westernblots ausgewertet (Abbildung 3.6). Hierbei zeigte sich, dass der überwiegende Anteil der PPDK in den Überstandsfraktionen lokalisiert und somit löslich ist. Nur ein geringer Anteil befindet sich in den Pellets nach der Zentrifugation.

Abbildung 3.6.: Westernblots der differentiellen Zentrifugation. Die Zellen wurden nach 4 h (a) bzw. nach einer Übernachtexpression (b) geerntet. Aufgetragen wurden 3 μ L Marker (M), Probe nach Zellaufschluss (A), sowie Pellets (P) und Überstände (Ü) der Zentrifugationsschritte (jeweils 10 μ L).

3.4. Native Reinigung der PPDK

Die Reinigung der PPDK erfolgte wie in 2.4.2 beschrieben. Im Verlauf der Reinigung konnten vier Proteinfraktionen bei Elution mit 50 mм, 150 mм, 200 mм und 250 mм Imidazol identifiziert werden (vgl. Abbildung 3.7). In einer nachfolgend durchgeführten SDS-PAGE mit Westernblot zeigte sich, dass drei Fraktionen (150 mм, 200 mм und 250 mм) PPDK in hoher Reinheit enthielten (Abbildung 3.8).

Abbildung 3.7.: Chromatogramm der PPDK-Reinigung mittels IMAC. Dargestellt sind die Absorption bei 280 nm (schwarz) und die Imidazolkonzentration (rot). Die gesammelten PPDK-Fraktionen sind durch Pfeile markiert.

Fraktion	$c(PPDK) [mg mL^{-1}]$	m(PPDK) [mg]	$\frac{m(PPDK)}{V(Kultur)} \left[mg L^{-1}\right]$
1 (150 mм)	$8,078 \pm 1,812$	$4,039 \pm 0,906$	$10,098 \pm 2,265$
2 (200 mм)	$48,935 \pm 2,556$	$24,466 \pm 1,278$	$61,165 \pm 3,195$
3 (250 mм)	$37,536 \pm 1,334$	$18,768 \pm 0,667$	$46,920 \pm 1,693$

Tabelle 3.1.: PPDK-Konzentration und Ausbeute nach Reinigung. Die Konzentrationen beziehen sich auf den erreichten Wert nach Einengen der fraglichen Fraktionen auf ein Volumen von 500 µL.

Die gesammelte PPDK-Fraktionen bei Elution mit 250 mM Imidazol ließ sich bis auf (37,54 \pm 1,34) mg mL⁻¹ konzentrieren. In der Expression konnten aus 2 L Kultur 20 g Zellen geerntet werden. Da im Zuge der Reinigung 4 g Zellen aufgeschlossen wurden, ergibt sich eine Ausbeute von etwa 47 mg L⁻¹ Kultur (vgl. Tabelle 3.1).

Abbildung 3.8.: SDS-PAGE (a) und Westernblot (b) der nativen Reinigung. Aufgetragen wurden 3 μ L Marker (M), 1 μ L der Proben des Zelllysates (A), sowie der Zentrifugationen bei 10 000 × g (10kÜ) bzw 100 000 × g und 10 μ L des Durchflusses (D) und nachfolgenden Elutionsfraktionen. Die PPDK-Banden sind rot hervorgehoben (MW: 98 kDa). Beim Westernblot wurden Anti-His-HRP-Antikörper in einer Verdünnung von 1:10000 verwendet.

Abbildung 3.9.: Chromatogramm der Größenausschlusschromatographie. Die Kurvenverläufe wurden auf die jeweilige Konzentration normalisiert. Fraktion 3 zeigt ein monodisperses Profil, während die PPDK in den Fraktionen 1 und 2 in verschiedenen Oligomerisierungszuständen vorliegt. Vertikale Linien markieren die Position der *Peaks*. Es wurde eine Superdex 200 5/150 GL-Säule mit einem Volumen von 3 mL eingesetzt.

Zur Bestimmung der Dispersität der gereinigten PPDK wurden Proben aller drei Fraktionen mittels einer Größenausschlusschromatographie (vgl. 2.5.2) analysiert. Hierbei zeigte sich, dass lediglich die mit 250 mM Imidazol eluierte Fraktion monodispers ist, während die mit 150 mM und 200 mM eluierten PPDK-Fraktionen in multiplen Oligomerisierungsgraden vorlagen (vgl. Abbildung 3.9). Da einige der eingesetzten Eichproteine im verwendeten Puffer nicht stabil waren, konnte eine zuverlässige Größenzuordnung nicht vorgenommen werden. Somit können lediglich die PPDK-Eluate untereinander verglichen werden. Deutlich zu erkennen sind aber insgesamt drei distinkte *Peaks* bei einem Elutionsvolumen von 1,28 mL, 1,68 mL und 1,97 mL. Das Ausschlussvolumen der Säule beträgt 1,2 mL.

3.5. CD-Spektroskopie

Das CD-Spektrum wurde wie in 2.5.7 beschrieben aufgenommen. Abbildung 3.10 zeigt das Spektrum nach Pufferkorrektur. Deutlich zu erkennen ist ein negativer Cotton-Effekt im Bereich um 210 nm, welcher auf α -helikale Strukturen hindeutet. Anhand des experimentellen Spektrums wurde eine Sekundärstrukturanalyse mit den Programmen SELCON3 (Sreerama u. Woody, 1993), CONTINLL (Provencher u. Gloeckner, 1981), CDSSTR (Johnson, 1999) und K2D3 (Louis-Jeune et al., 2011) durchgeführt.

Abbildung 3.10.: CD-Spektrum von gereinigter PPDK. Die PPDK lag in einer Konzentration von $0,1 \text{ mg mL}^{-1}$ in 50 mM Kaliumphosphat-Puffer mit 10 mM Magnesiumsulfat vor. Es wurden 15 Spektren mit einer Auflösung von 1 nm akkumuliert. Im Bereich um 210 nm zeigt sich ein negativer Cotton-Effekt, welcher charakteristisch für α -helikale Strukturanteile ist. Farbig dargestellt sind die mit unterschiedlichen Programmen vorhergesagten Spektren.

Die daraus resultierenden, vorhergesagten Spektren sind ebenfalls in Abbildung 3.10 dargestellt. Alle verwendeten Algorithmen sagen das Spektrum qualitativ korrekt vorher, die geringsten Abweichungen vom experimentellen Spektrum ergeben sich für CONTINLL und CDSSTR, wobei ersteres allerdings die geringste Übereinstimmung mit den Sekundärstrukturanteilen aus der *ab initio* Vorhersage und den Strukturdaten aus *Zea mays* zeigt. Für die PPDK werden in allen Fällen hohe α -helikale Strukturanteile vorhergesagt, im Fall von CONTINLL jedoch nur ein sehr geringer Anteil an β -Strands (vgl. Tabelle 3.2). Die *ab initio* Vorhersage mit SOPMA, sowie die Ergebnisse von K2D3 und CDSSTR sind weitestgehend deckungsgleich mit den Strukturanteilen der PPDK aus *Zea mays* (Tabelle 3.2).

Tabelle 3.2.: Vorhersage der Sekundärstrukturanteile. Aufgeführt sind die vorhergesagten Strukturelemente anhand des CD-Spektrums. Zum Vergleich dienen die Ergebnisse der sequenzbasierten *ab initio* Vorhersage (SOPMA), sowie die Sekundärstrukturanteile aus der Kristallstruktur der PPDK aus *Zea mays* (PDB: 1VBG).

Algorithmus	α-Helix [%]	β-Strand [%]	β-Turn [%]	Coil [%]
K2D3	56	18		
SELCON3	56	5	17	22
CONTINLL	68	1	14	17
CDSSTR	51	20	15	15
SOPMA	47	17	9	27
PPDK (Zea mays)	47	16		

3.6. Aktivitätstest

Um die Aktivität der gereinigten PPDK zu quantifizieren, wurden zunächst die beiden Fraktionen mit der höchsten PPDK-Konzentration – Fraktion 2 und Fraktion 3 (200 mM und 250 mM Imidazol) – untersucht (vgl. 2.5.8). Hierbei zeigte sich im Vergleich zur Negativkontrolle, dass in beiden Fraktionen eine Aktivität zu verzeichnen ist (siehe Tabelle 3.3).

Tabelle 3.3.: Aktivität der gereinigten PPDK-Fraktionen 2 und 3. Die Absorption bei 340 nm wurde über einen Zeitraum von 80 s in Dreifachbestimmung aufgenommen. Anschließend wurde eine Tangente an die Messpunkte gelegt um die Reaktionsgeschwindigkeit zu bestimmen. Der Vergleich der Negativkontrolle mit den beiden vermessenen Fraktionen zeigt eine deutliche Aktivität.

Fraktion	Aktivität [µmol min ⁻¹]	spez. Aktivität [Umg ⁻¹]
Negativkontrolle	$0,0005 \pm 0,0001$	
2 (200 mм Imidazol)	$0,065 \pm 0,024$	$0,31\pm0,12$
3 (250 mм Imidazol)	$0,037 \pm 0,006$	$0,99 \pm 0,09$

Da hinsichtlich zukünftiger Kristallisationsexperimente in erster Linie die monodispers vorliegende Fraktion 3 von Interesse ist, wurde von dieser Fraktion eine vollständige Reaktionskinetik aufgenommen. Hierbei ergaben sich durch Anpassen einer Sättigungsfunktion durch nichtlineare Regression an die Michaelis-Menten-Gleichung (3.1) für ATP und Pyruvat ein K_M von (50 ± 9) µM bzw. (270 ± 44) µM, sowie ein V_{max} von (0,095 ± 0,005) mM min⁻¹ (ATP) (0,093 ± 0,005) mM min⁻¹ (Pyruvat). Auffällig ist die bei höheren ATP-Konzentrationen wieder abfallende Reaktionsgeschwindigkeit (vgl. Abbildung 3.11).

$$v = \frac{V_{\max} \cdot [S]}{K_m + [S]} \tag{3.1}$$

Abbildung 3.11.: Reaktionskinetik der PPDK mit ATP (A) und Pyruvat (B) als Substrat. Der inhibierende Effekt von ATP auf die im gekoppelten Enzymassay eingesetzte MDH ist in (A) ersichtlich. Die Ordinatenachse ist der besseren Übersichtlichkeit wegen logarithmisch skaliert.

Die Wechselzahl k_{cat} wurde anhand von Gleichung (3.2) aus V_{max} und der PPDK-Konzentration von (0,38 ± 0,02) mM mit (1,63 ± 0,09) s⁻¹ bestimmt. Die spezifische Aktivität der PPDK beträgt (0,99 ± 0,09) U mg⁻¹ und konnte ebenfalls unter Berücksichtigung der Proteinkonzentration mittels Gleichung 3.3 berechnet werden.

$$k_{\rm cat} = \frac{V_{\rm max}}{[E_0]} \tag{3.2}$$

Die katalytische Effizienz k_{cat}/K_M beträgt (32,60 ± 9,36) s⁻¹ mm⁻¹ (ATP) bzw. (6,04 ± 1,54) s⁻¹ mm⁻¹ (Pyruvat). Eine Auflistung der kinetischen Parameter ist in Tabelle 3.4 zu finden.

spez. Aktivität
$$[\text{U}\,\text{mg}^{-1}] = \frac{V_{\text{max}} \left[\mu M \,\text{min}^{-1}\right] \cdot V(\text{Ansatz}) \left[\text{L}\right]}{m(\text{Protein}) \left[\text{mg}\right]}$$
 (3.3)

Parameter	Wert	Einheit
V _{max} k _{cat}	$0,093 \pm 0,005$ $1,63 \pm 0,09$	$m M \min^{-1} s^{-1}$
K _m (ATP) K _m (Pyruvat)	50 ± 9 270 ± 44	μм μм
k _{cat} /K _M (ATP) k _{cat} /K _M (Pyruvat)	$\begin{array}{rrr} 32,60 & \pm \ 9,36 \\ 6,04 & \pm \ 1,54 \end{array}$	$s^{-1} mm^{-1} s^{-1} mm^{-1}$
spez. Aktivität	0,99 ± 0,09	$\mathrm{U}\mathrm{mg}^{-1}$

Tabelle 3.4.: Kinetische Parameter der PPDK.

3.7. Homologiemodelle

Die erzeugten Homologiemodelle (vgl. 2.6.3) der PPDK aus *F. trinervia* zeigen eine gute Übereinstimmung mit den zu Grunde liegenden Templat-Strukturen: Es ergab sich ein RMSD von 0,708 Å für das auf der Struktur aus *C. symbiosum* und 0,705 Å für das auf der Struktur aus *Zea mays* basierende Modell. Die Sequenzidentität zur zwischen *F. trinervia* und *Zea mays* beträgt 79 %, zwischen *F. trinervia* und *C. symbiosum* 55 %. Das jeweils beste Modell wurde anhand des zDOPE Wertes (Shen u. Sali, 2006; Pieper et al., 2011), sowie der Ergebnisse der PROCHECK-Analyse ausgewählt. Der *Discrete Optimized Protein Energy* (engl.) (DOPE) Wert stellt ein statistisch ermitteltes Potential dar, welches die paarweisen atomaren Abstände innerhalb eines Modells im Vergleich zu einer definierten Menge bekannter Proteinstrukturen beurteilt.

In der normalisierten Variante (zDOPE) stehen Werte gleich oder kleiner als -1,0 für ein sehr exaktes Modell, bei dem sich mehr als 80 % der C_{α} -Atome innerhalb eines Abstands von 3,5 Å zu ihrer korrekten Position befinden (Lasker et al., 2012). Der zDOPE für das auf *Zea mays* basierende Modell beträgt -0,92803, für das auf *C. symbiosum* basierende Modell -0,92815. Da das Templat Strukturen aufweisen kann, welche nicht in der verwendeten Vergleichsmenge bekannter Strukturen vorhanden ist, kann der zDOPE-Wert hierdurch fälschlich erhöht werden. Daher können die DOPE-Werte je Aminosäurerest für das Templat und das Homologiemodell verglichen werden. Eine vergleichende Darstellung der DOPE-Profile der im Rahmen dieser Arbeit generierten Modelle findet sich in Abbildung 3.12. Die Profile weisen einen qualitativ ähnlichen Verlauf auf, was für die Korrektheit der erstellen Modelle spricht. Allerdings zeigt sich in beiden Fällen ein zunehmender Versatz der Kurvenverläufe, was auf eine Verschiebung des Alignments in den entsprechenden Sequenzabschnitten hindeuten kann.

Abbildung 3.12.: DOPE-Profile der von *Zea mays* (A) bzw *C. symbiosum* (B) abgeleiteten Homologiemodelle und ihrer Template je Position im Alignment. Der Verlauf ist in beiden Fällen für das Modell und das Templat ähnlich, was auf eine gute Qualität der Homologiemodelle schließen lässt. Allerdings zeigen sich Verschiebungen der Profile um einige Reste, was auf einen Versatz des Alignments hindeuten kann.

Im Ramachandran-Plot zeigt keines der beiden ausgewählten Modelle eine Kombination von ψ - und φ -Winkel, die nicht in einem der erlaubten Bereiche liegt (vgl. Abbildungen A.3 und A.4).

Anhand der Modelle wurde eine Visualisierung des *Domain-Swiveling* Mechanismus für die PPDK aus *F. trinervia* (Abbildung 3.13), sowie der PEP-Bindestelle (Abbildung 3.14) erstellt. Es zeigt sich eine deutliche Torsion der zentralen Phospo-Histidindomäne und des katalytischen His458.

In der Darstellung der modellierten Substratbindestelle sind die für die Koordination von PEP wichtigen Reste Arg562, Arg619, Arg669, Glu748, Asp772 und Asn771 sichtbar. Ebenfalls erkennbar ist das Cys834, welches als Protonendonor/-akzeptor zusammen mit Ser767 an der Enolisierung des Pyruvats beteiligt ist (Yankie et al., 1995). Die genannten Reste befinden sich in hoch konservierten Bereichen (Abbildung A.1).

Abbildung 3.13.: Homologiemodelle der PPDK aus *F. trinervia*. Es zeigt die PEP gebundene Konformation basierend auf der Struktur aus *Zea mays*, sowie das auf *C. symbiosum* basierende Modell (transparent, grau). Beide Modelle stellen die jeweiligen Extremkonformationen des *Swivelingdomain* Mechanismus dar. Das an der Übertragung der Phosphatgruppe beteiligte His458 ist als Stabmodell rot eingefärbt und durch einen Stern markiert. Die einzelnen Domänen der PPDK sind farblich hervorgehoben: Nukleotidbindedomäne (grün), Pyruvat/PEP-Bindedomäne (blau), Phosphohistidin-Domäne (gelb), Linker-Peptide (magenta und rot).

Abbildung 3.14.: Substratbindetasche für PEP. Die Ansicht zeigt die Bindestelle für PEP im Homologiemodell der PPDK aus *F. trinervia*. Seitenketten in räumlicher Nähe zum Substrat sind als Linienmodell dargestellt und benannt. Die gestrichelten Linien zeigen mögliche polare Wechselwirkungen mit einer Länge von maximal 3,5 Å an.

4. Diskussion

4.1. Expression und Reinigung der PPDK

Die PPDK aus *F. trinervia* konnte erfolgreich in *E. coli* BL21 (DE3) exprimiert werden. Sowohl in einer vierstündigen Expression, als auch in einer Expression über Nacht zeigten sich in der differentiellen Zentrifugation nur geringe unlösliche Anteile, gemessen an der Gesamtmenge Protein (vgl. 3.3). Dies spricht dafür, dass nur in geringem Maße *Inclusion Bodies* gebildet wurden und legt die Vermutung nahe, das der lösliche Proteinanteil nativ gefaltet ist.

Dies konnte durch die CD-Spektroskopie gestützt werden. Es konnten Sekundärstrukturanteile nachgewiesen werden, welche sich mit Sequenz basierten *ab initio* Vorhersagen, sowie bekannten Strukturdaten decken (vgl. Tabelle 3.2). In einem letzten Schritt konnte die tatsächlich funktionelle Faltung der rekombinanten PPDK in einem Aktivitätstest gezeigt werden.

Im Rahmen der Reinigung konnten mit steigender Imidazolkonzentration insgesamt drei Fraktionen PPDK gewonnen werden, die eine jeweils hohe Reinheit aufweisen (vgl. 3.8) und sich durch ihre Dispersität unterscheiden (siehe Abbildung 3.9). Der Oligomerisierungsgrad beeinflusst offenbar die Bindungsaffinität der PPDK an die Säule, was zu einem unterschiedlichen Elutionsverhalten führt. Ursächlich könnte eine zunehmende Maskierung des Hexa-Histidin-Tags in den Oligomeren sein. Eine zuverlässige Größenzuordnung konnte in der Größenausschluschromatographie aufgrund der sehr eng zusammen liegenden Elutionsvolumina nicht vorgenommen werden. Es konnte aber gezeigt werden, dass die bei 250 mM gewonnene Fraktion monodispers vorliegt und sich somit gut für zukünftige Kristallisationsexperimente eignet.

4. Diskussion

In Bezug auf den Oligomerisierungsgrad der PPDK können auf Grund der Instabilität der eingesetzten Eichproteine im verwendeten Reinigungspuffer keine gesicherten Aussagen getroffen werden. Die mit 200 mM Imidazol eluierte Fraktion 2 weist jedoch eine recht geringe spezifische Aktivität im Vergleich zur mit 250 mM eluierten Fraktion 3 auf (Tabelle 3.3). Aus dem Chromatogramm (Abbildung 3.9) wird ersichtlich, dass bei Fraktion 2 der *Peak* bei einem Elutionsvolumen von etwa 1,7 mL im Vergleich zu Fraktion 3 deutlich niedriger und ein zusätzlicher *Peak* bei etwa 1,97 mL zu erkennen ist. Bei letzterem könnte es sich demnach um die inaktive monomere Form handeln, der *Peak* bei 1,68 mL könnte somit die aktive tetramere Form darstellen. Das Ausschlussvolumen der Säule wurde mit 1,2 mL bestimmt, so dass es sich bei dem in Fraktion 1 sichtbaren *Peak* bei 1,28 mL um Aggregate handeln könnte.

Die Proteinausbeute liegt – betrachtet man nur die monodispers gereinigte Fraktion – bei etwa 47 mg L⁻¹ Kulturmedium. Aus der Literatur ist für die heterologe Expression der PPDK aus *Zea mays* in *E. coli* eine Ausbeute von 5 mg L⁻¹ Kultur bekannt (Chastain et al., 1997). Die im Rahmen dieser Arbeit erzielte Ausbeute ist mit 47 mg L⁻¹ für die monodisperse Fraktion bzw. 118 mg L⁻¹ für die Summe aller PPDK-Fraktionen um den Faktor 10 bis 20 höher. Dies kann durch die Verwendung Codon optimierter DNA erklärt werden, welche zu einer höheren Translationsrate und somit Expressionsrate führt. Zu beachten ist hierbei allerdings die erhöhte Gefahr einer Fehlfaltung des Proteins durch die höhere Translationsgeschwindigkeit (Komar et al., 1999; Cortazzo et al., 2002). Die damit einhergehende Bildung von *Inclusion bodies* konnte aber nicht beobachtet werden (vgl. Abbildung 3.6). Ebenfalls gegen eine Fehlfaltung spricht die Ausbildung von Sekundärstrukturen (vgl. 3.5) und die beobachtete Aktivität (vgl. 3.6) der heterolog exprimierten PPDK aus *F. trinervia*.

4. Diskussion

Der in der Literatur beschriebene Effekt der ausgeprägten Kältelabilität der PPDK aus *F. trinervia* (Burnell, 1990), welcher zum Zerfall der funktionellen Tetramere in Monomere führt, ließe sich unter Umständen zur Erhöhung der effektiv nutzbaren Ausbeute einsetzen. Die Vereinigung aller gereinigter PPDK-Fraktionen und eine anschließende Kältebehandlung sollte zu einer einheitlichen Population von PPDK-Monomeren führen.

4.2. Aktivität der gereinigten PPDK

Die spezifische Aktivität der PPDK aus *F. trinervia* liegt mit (0,99 \pm 0,09) U mg⁻¹ in der PEP-bildenden Richtung in der Größenordnung von Literaturwerten für *Zea mays* (Hatch u. Slack, 1975). In ähnlicher Weise stimmen auch die bestimmten K_m-Werte für ATP (50 \pm 9) µM und Pyruvat (270 \pm 44) µM mit Literaturwerten von *Zea mays* und *F. brownii* überein (Hatch u. Slack, 1975; Ohta et al., 1997), die ebenfalls im zwei- bis dreistelligen mikromolaren Bereich liegen. Ein Vergleich der experimentellen Daten mit Literaturwerten ist in Tabelle 4.1 aufgeführt. Auffällig ist hierbei, dass die K_m-Werte der heterolog exprimierten PPDKs jeweils deutlich unterhalb der nativ isolierten liegen. Dies ist vermutlich auf fehlende Regulationsmechanismen – beispielsweise die lichtinduzierte Phosphorylierung durch das PDRP (siehe 1.2) – bei der heterolog exprimierten PPDK zurückzuführen.

 $\rm V_{max}$ wurde im Rahmen der nichtlinearen Regression für ATP und Pyruvat bestimmt. Unter Berücksichtigung der Standardabweichung sind die beiden Werte – (0,095 ± 0,005) mm min⁻¹ (ATP) und (0,093 ± 0,005) mm min⁻¹ (Pyruvat) – als identisch anzusehen. Dies entspricht der Erwartung, da die maximale Reaktionsgeschwindigkeit bei Substratsättigung in beiden Fällen identisch sein sollte.

Tabelle 4.1.: Vergleich der kinetischen Parameter mit Literaturwerten der PPDK aus *F. bidentis, F. brownii* und *Zea mays.* Die Literaturwerte beziehen sich jeweils auf die PEP-bildende Reaktion. Ohne Klammern sind die K_m-Werte der heterolog in *E. coli* exprimierten PPDK angegeben, in Klammern die der nativ isolierten.

Spezies	K _m ATP	[µм] Pyruvat	spez. Aktivität [Umg ⁻¹]
F. trinervia	50 ± 9	270 ± 44	$0,99 \pm 0,09$
F. bidentis	49 (25) ²	59 (73) ²	
F. brownii	$50 (88)^2$	$32 (67)^2$	
Zea mays	47 (95) ²	$65 (158)^2$	$1,2^{1}$
		$(178)^3$	

¹ Hatch u. Slack (1975)

² Ohta et al. (1997)

³ Chastain et al. (2011)

Der beobachtete Abfall der gemessenen Reaktionsgeschwindigkeit bei einer ATP-Konzentration von 2,5 mM (Abbildung 3.11) ist auf die inhibitorische Wirkung von ATP, ADP und AMP auf die als letzte Stufe des gekoppelten Enzymassays eingesetzte MDH zurückzuführen (Harris et al., 2002). Bei einer ATP-Konzentration von 2,5 mM ist nicht mehr die Pyruvat-Bildung durch die PPDK, sondern die Umsetzung des Oxalacetats durch die MDH der geschwindigkeitsbestimmende Schritt.

Zusammenfassend lässt sich festhalten, dass die Aktivität der rekombinant aus *E. coli* gewonnenen PPDK aus *F. trinervia* in etwa vergleichbar mit anderen bekannten rekombinant hergestellten (Ohta et al., 1997; Chastain et al., 2011), oder nativ isolierten (Hatch u. Slack, 1975; Ohta et al., 1997) PPDKs ist.

4.3. Homologiemodelle

Die erstellten Homologiemodelle weisen nach einer Analyse mit PROCHECK keine auffälligen Anomalien auf, so dass die Modelle als hinreichend korrekt angesehen werden können. Hierauf deuten auch die zDOPE-Werte von -0,92803 für das auf *Zea mays* bzw. -0,92815 für das auf *C. symbiosum* basierende Modell hin. Bei Betrachtung der DOPE-Werte je Position im Alignment (vgl. Abbildung 3.12) zeigt sich, dass die Profile der Modelle und der entsprechenden Template qualitativ ähnlich sind. Es fallen allerdings Verschiebungen mit zunehmender Position im Alignment auf, welche auf einen Versatz des Alignments hindeuten können. Dies ist allerdings unwahrscheinlich, da insbesondere im C-terminalen Bereich innerhalb der PEP/Pyruvat-Bindedomäne (ab Position 517) hoch konservierte Sequenzabschnitte mit bekannter Funktionalität – beispielsweise in Bezug auf die Substratbindung – zu finden sind. Diese konservierten Abschnitte sind korrekt aligniert (vgl. Abbildung A.1), weisen aber im DOPE-Profil dennoch einen Versatz auf (Abbildung 3.12).

Da die PPDK aus *Zea mays* zudem eine hohe Sequenzidentität von 79 % zur PPDK aus *F. trinervia* aufweist, bietet das hierauf basierende Modell eine gute Annäherung an die tatsächliche dreidimensionale Struktur der PPDK aus *F. trinervia*, insbesondere in Hinblick auf die räumliche Ausrichtung der Seitenketten in der PEP-Bindetasche. In Kombination mit der Identifikation hoch konservierter Sequenzabschnitte können einige für die PEP-Bindung und Umsetzung wichtige Reste identifiziert werden (Nakanishi et al., 2005): Arg562, Arg619, Arg669, Glu748, Asp772 und Asn771, sowie Cys834, welches als Protonen-Donor fungiert (Abbildung 3.14). Durch gezielte Mutation dieser Reste kann in zukünftigen Experimenten ihr Einfluss auf die Aktivität und Stabilität der PPDK untersucht werden.

4.4. Ausblick

Die im Rahmen dieser Arbeit gereinigte PPDK liegt in hoher Konzentration, monodispers und hoher Reinheit vor, so dass sie in Kristallisationsexperimente eingesetzt werden kann. Eine erfolgreiche Kristallisation ist dann notwendig für die Strukturaufklärung mittels Röntgenkristallographie. Zusätzlich können anhand der erstellten Homologiemodelle in silico Analysen durchgeführt werden. Beispielsweise kann nach Bindetaschen für Effektoren gesucht werden, welche das Domain-Swiveling in distinkten Zwischenstadien halten. Sobald Kristallisationsbedingungen für die wildtypische Form etabliert sind, können diese für die Co-Kristallisation mit den gefundenen Effektoren adaptiert werden. Letztere können darüber hinaus direkt mit Hilfe des etablierten Aktivitätstests auf ihren Einfluss auf die PPDK-Aktivität hin untersucht werden. Aus den resultierenden Strukturdaten ließen sich dann intermediäre Konformationen ableiten, die zu einem genaueren Verständnis der Funktionalität der PPDK führen können. Mittels einer Netzwerkanalyse ließen sich zusätzlich Regionen innerhalb der PPDK identifizieren, welche für die Flexibilität der zentralen Phospho-Histidin-Domäne verantwortlich sind. Hier bietet sich ein weiterer Ansatzpunkt um beispielsweise über Cross-Linking Zwischenkonformationen zu stabilieren.

Ein weiterer interessanter Aspekt ist die genauere Untersuchung der Kältelabilität der PPDK. Die für die Kältetoleranz bestimmter PPDK Spezies verantwortlichen Aminosäurereste sind bekannt und für die Wirkungsweise wurden hydrophobe Wechselwirkungen, sowie eine gesteigerten Affinität zum im Tetramer zentral komplexierten Mg²⁺-Ion postuliert (Ohta et al., 1997). Gelöste Kristallstrukturen, auch von Mutanten, welche die zur Kältetoleranz führenden Punktmutationen tragen, könnten diese Vermutungen bestätigen oder erweitern.

Abbildungsverzeichnis

1.1.	Struktur der PPDK aus Zea mays	11
1.2.	C_4 -Kohlenstofffixierung	13
1.3.	Lichtabhängige Aktivierung der PPDK	14
1.4.	Einfluss der PPDK auf die glykolytische ATP-Ausbeute	15
1.5.	Kälteinaktivierung der PPDK	17
3.1.	Agarosegel zur Reinigung von Vektor und dem Insert	44
3.2.	Agarosegel nach Kolonie-PCR	45
3.3.	Plasmidkarte von pETEV-16b-ppdk	46
3.4.	SDS-PAGE der Expressionsstudien	47
3.5.	Vergleich der Expression in BL21 (DE3) und BL21 Gold (DE3)	48
3.6.	Westernblots der differentiellen Zentrifugation	49
3.7.	Chromatogramm der PPDK-Reinigung mittels IMAC	50
3.8.	SDS-PAGE und Westernblot der nativen Reinigung	51
3.9.	Chromatogramm der Größenausschlusschromatographie	52
3.10.	CD-Spektrum von gereinigter PPDK	53
3.11.	Reaktionskinetik der PPDK	56
3.12.	DOPE-Profile der Homologiemodelle und ihrer Template	59
3.13.	Homologiemodelle der PPDK	61
3.14.	Substratbindetasche für PEP	62
A.1.	Sequenzalignment pETEV-16b-ppdk	85
A.2.	Multiples Alignment der Primärstrukturen verschiedener PPDKs	88

A.3.	Ramachandran-Plot des von Zea mays abgeleiteten Homologie-	
	modells	89
A.4.	Ramachandran-Plot des von C. symbiosum abgeleiteten Homolo-	
	giemodells	90

Tabellenverzeichnis

2.3.	Cyclerprogramm SLIC	29
2.4.	Cyclerprogramm Kolonie-PCR	30
2.5.	Zentrifugationsschritte der differentiellen Zentrifugation	36
2.6.	Pipettierschema für SDS-Gele	38
3.1.	PPDK-Konzentration und Ausbeute nach Reinigung	51
3.2.	Vorhersage der Sekundärstrukturanteile	54
3.3.	Aktivität der gereinigten PPDK-Fraktionen	55
3.4.	Kinetische Parameter der PPDK	57
4.1.	Vergleich der kinetischen Parameter mit Literaturwerten	66

Literaturverzeichnis

- [Ashton et al. 1990] ASHTON, AR ; BURNELL, JN ; FURBANK, RT ; JENKINS, CLD ; HATCH, MD: The enzymes in C4 photosynthesis. In: DEY, P.M. (Hrsg.) ; HARBORNE, J.B. (Hrsg.): Methods in Plant Biochemistry. Enzymes of Primary Metabolism. London : Academic Press, 1990. ISBN 978-0-12-461017-0, S. 39-72
- [Bradford 1976] BRADFORD, M M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. In: *Analytical biochemistry* 72 (1976), Mai, 248–54. – ISSN 0003–2697
- [Burnell u. Hatch 1985] BURNELL, J N. ; HATCH, M D.: Regulation of C4 photosynthesis: purification and properties of the protein catalyzing ADP-mediated inactivation and Pi-mediated activation of pyruvate,Pi dikinase. In: Archives of biochemistry and biophysics 237 (1985), Mârz, Nr. 2, 490–503. – ISSN 0003–9861
- [Burnell 1990] BURNELL, James N.: A Comparative Study of the Cold-Sensitivity of Pyruvate,Pi Dikinase in Flaveria Species. In: *Plant Cell Physiol.* 31 (1990), Nr. 2, S. 295–297
- [Burnell u. Chastain 2006] BURNELL, Jim N. ; CHASTAIN, Chris J.: Cloning and expression of maize-leaf pyruvate, Pi dikinase regulatory protein gene. In: *Biochemical and biophysical research communications* 345 (2006), Juni, Nr. 2, 675–80. – DOI 10.1016/j.bbrc.2006.04.150. – ISSN 0006–291X
- [Chastain et al. 1997] CHASTAIN, C J. ; LEE, M E. ; MOORMAN, M A. ; SHAMEEKUMAR, P ; CHOLLET, R: Site-directed mutagenesis of maize recombinant C4-pyruvate,or-
thophosphate dikinase at the phosphorylatable target threonine residue. In: *FEBS letters* 413 (1997), August, Nr. 1, 169–73. – ISSN 0014–5793

- [Chastain u. Chollet 2003] CHASTAIN, Chris J. ; CHOLLET, Raymond: Regulation of pyruvate, orthophosphate dikinase by ADP-/Pi-dependent reversible phosphorylation in C3 and C4 plants. In: *Plant Physiology and Biochemistry* 41 (2003), Juni, Nr. 6-7, 523–532. – DOI 10.1016/S0981–9428(03)00065–2. – ISSN 09819428
- [Chastain et al. 2011] CHASTAIN, Chris J. ; FAILING, Christopher J. ; MANANDHAR, Lumu ; ZIMMERMAN, Margaret a. ; LAKNER, Mitchell M. ; NGUYEN, Tony H T.: Functional evolution of C(4) pyruvate, orthophosphate dikinase. In: *Journal of experimental botany* 62 (2011), Mai, Nr. 9, 3083–91. – DOI 10.1093/jxb/err058. – ISSN 1460–2431
- [Chastain et al. 2006] CHASTAIN, Chris J. ; HECK, Jarrod W. ; COLQUHOUN, Thomas a. ; VOGE, Dylan G. ; GU, Xing-You: Posttranslational regulation of pyruvate, orthophosphate dikinase in developing rice (Oryza sativa) seeds. In: *Planta* 224 (2006), September, Nr. 4, 924–34. – DOI 10.1007/s00425–006–0259–3. – ISSN 0032–0935
- [Chastain et al. 1996] CHASTAIN, Chris J. ; THOMPSON, Brent J. ; CHOLLET, Raymond: Maize recombinant C4-pyruvate, orthophosphate dikinase: expression in Escherichia coli, partial purification, and characterization of the phosphorylatable protein. In: *Photosynthesis Research* 49 (1996), 83–89
- [Cornic 2000] CORNIC, G: Drought stress inhibits photosynthesis by decreasing stomatal aperture â not by affecting ATP synthesis. In: *Trends in Plant Science* 5 (2000), Mai, Nr. 5, 187–188. DOI 10.1016/S1360–1385(00)01625–3. ISSN 13601385
- [Cortazzo et al. 2002] CORTAZZO, Patricia ; CERVEÑANSKY, Carlos ; MARÍN, Mónica ; REISS, Claude ; EHRLICH, Ricardo ; DEANA, Atilio: Silent mutations affect in vivo protein folding in Escherichia coli. In: *Biochemical and bio*-

physical research communications 293 (2002), April, Nr. 1, 537–41. – DOI 10.1016/S0006–291X(02)00226–7. – ISSN 0006–291X

- [Cosenza et al. 2002] COSENZA, Lawrence W. ; BRINGAUD, Frederic ; BALTZ, Theo ; VELLIEUX, Frederic M.: The 3.0ÅResolution Crystal Structure of Glycosomal Pyruvate Phosphate Dikinase from Trypanosoma brucei. In: *Journal of Molecular Biology* 318 (2002), Mai, Nr. 5, 1417–1432. – DOI 10.1016/S0022–2836(02)00113–4. – ISSN 00222836
- [Di Tommaso et al. 2011] DI TOMMASO, Paolo ; MORETTI, Sebastien ; XENARIOS, Ioannis ; OROBITG, Miquel ; MONTANYOLA, Alberto ; CHANG, Jia-Ming ; TALY, Jean-François ; NOTREDAME, Cedric: T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. In: *Nucleic acids research* 39 (2011), Juli, Nr. Web Server issue, W13–7. – DOI 10.1093/nar/gkr245. – ISSN 1362–4962
- [Dong et al. 2004] DONG, X. ; STOTHARD, P. ; FORSYTHE, I. J. ; WISHART, D. S.: PlasMapper: a web server for drawing and auto-annotating plasmid maps. In: *Nucleic Acids Research* 32 (2004), Juli, Nr. Web Server, W660–W664. – DOI 10.1093/nar/gkh410. – ISSN 0305–1048
- [Geourjon u. Deléage 1995] GEOURJON, C. ; DELÉAGE, G.: SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. In: *Computer applications in the biosciences : CABIOS* 11 (1995), Dezember, Nr. 6, 681–4. – DOI 10.1093/bioinformatics/11.6.681. – ISSN 0266–7061
- [Greenfield 2007] GREENFIELD, Norma J.: Using circular dichroism spectra to estimate protein secondary structure. In: *Nature Protocols* 1 (2007), Januar, Nr. 6, 2876–2890. DOI 10.1038/nprot.2006.202. ISSN 1754–2189
- [Harris et al. 2002] HARRIS, Douglas G.; MARX, Douglas P.; ANDERSON, Jonathan M. ; McCune, Ronald W.; ZIMMERMAN, S S.: Kinetic and molecular modeling of nucleoside and nucleotide inhibition of malate dehydrogenase. In: *Nucleosides*,

nucleotides & nucleic acids 21 (2002), Nr. 11-12, 813–23. – DOI 10.1081/NCN– 120016483. – ISSN 1525–7770

- [Hatch u. Slack 1968] НАТСН, M D. ; SLACK, C R.: A new enzyme for the interconversion of pyruvate and phosphopyruvate and its role in the C4 dicarboxylic acid pathway of photosynthesis. In: *The Biochemical journal* 106 (1968), Januar, Nr. 1, 141–6. – ISSN 0264–6021
- [Hatch u. Slack 1975] HATCH, M D. ; SLACK, C R.: Pyruvate, P1 dikinase from leaves. In: *Methods in Enzymology* 42 (1975), S. 212–219. DOI 10.1016/0076–6879(75)42117–6
- [Hatch 2002] HATCH, Marshall D.: C(4) photosynthesis: discovery and resolution. In: *Photosynthesis research* 73 (2002), Januar, Nr. 1-3, 251-6. DOI 10.1023/A:1020471718805. ISSN 1573–5079
- [Hennen-Bierwagen et al. 2009] HENNEN-BIERWAGEN, Tracie a. ; LIN, Qiaohui ;
 GRIMAUD, Florent ; PLANCHOT, Véronique ; KEELING, Peter L. ; JAMES, Martha G. ; MYERS, Alan M.: Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. In: *Plant physiology* 149 (2009), Mârz, Nr. 3, 1541–59. DOI 10.1104/pp.109.135293. ISSN 0032–0889
- [Herzberg et al. 1996] HERZBERG, O ; CHEN, C C. ; KAPADIA, G ; MCGUIRE, M ; CARROLL, L J. ; NOH, S J. ; DUNAWAY-MARIANO, D: Swiveling-domain mechanism for enzymatic phosphotransfer between remote reaction sites. In: *Proceedings of the National Academy of Sciences of the United States of America* 93 (1996), April, Nr. 7, 2652–7. – ISSN 0027–8424
- [Herzberg et al. 2002] HERZBERG, Osnat ; CHEN, Celia C H. ; LIU, Sijiu ; ТЕМРСZYK, Aleksandra ; HOWARD, Andrew ; WEI, Min ; YE, Dongmei ; DUNAWAY-MARIANO, Debra: Pyruvate Site of Pyruvate Phosphate Dikinase: Crystal Structure of the Enzyme–Phosphonopyruvate Complex, and Mutant Analysis † , ‡. In:

Biochemistry 41 (2002), Januar, Nr. 3, 780–787. – DOI 10.1021/bi011799+. – ISSN 0006–2960

- [Huang et al. 2008] HUANG, Shaobai ; COLMER, Timothy D. ; MILLAR, a H.: Does anoxia tolerance involve altering the energy currency towards PPi? In: *Trends in plant science* 13 (2008), Mai, Nr. 5, 221–7. DOI 10.1016/j.tplants.2008.02.007.
 ISSN 1360–1385
- [Ikemura 1981] IKEMURA, Toshimichi: Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. In: *Journal of molecular biology* 151 (1981), September, Nr. 3, 389–409. – DOI 10.1016/0022–2836(81)90003–6. – ISSN 0022–2836
- [Jenkins u. Hatch 1985] JENKINS, C L. ; HATCH, M D.: Properties and reaction mechanism of C4 leaf pyruvate,Pi dikinase. In: Archives of biochemistry and biophysics 239 (1985), Mai, Nr. 1, 53–62. – ISSN 0003–9861
- [Johnson 1999] JOHNSON, W C.: Analyzing protein circular dichroism spectra for accurate secondary structures. In: *Proteins* 35 (1999), Mai, Nr. 3, 307–12. – DOI 10.1002/(SICI)1097–0134(19990515)35:3<307::AID–PROT4>3.0.CO;2–3. – ISSN 0887–3585
- [Kang u. Gho 2002] KANG, D ; GHO, YS: Highly Sensitive and Fast Protein Detection with Coomassie Brilliant Blue in Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis. In: *Bulletin of the Korean Chemical Society* 23 (2002), November, Nr. 11, 1511–1512. – DOI 10.5012/bkcs.2002.23.11.1511. – ISSN 0253–2964
- [Kang et al. 2005] KANG, Hong-Gyu ; PARK, Sunhee ; MATSUOKA, Makoto ; AN, Gynheung: White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). In: *The Plant journal : for cell and molecular biology* 42 (2005), Juni, Nr. 6, 901–11. DOI 10.1111/j.1365–313X.2005.02423.x. ISSN 0960–7412

- [Komar et al. 1999] Комак, Anton a. ; LESNIK, Thierry ; REISS, Claude: Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. In: *FEBS Letters* 462 (1999), Dezember, Nr. 3, 387–391. DOI 10.1016/S0014–5793(99)01566–5. ISSN 00145793
- [Laemmli 1970] LAEMMLI, U. K.: Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. In: *Nature* 227 (1970), August, Nr. 5259, 680–685. – DOI 10.1038/227680a0. – ISSN 0028–0836
- [Langmead u. Salzberg 2012] LANGMEAD, Ben ; SALZBERG, Steven L.: Fast gapped-read alignment with Bowtie 2. In: *Nature methods* 9 (2012), April, Nr. 4, 357–9.
 DOI 10.1038/nmeth.1923. ISSN 1548–7105
- [Lasker et al. 2012] LASKER, Keren ; VELÁZQUEZ-MURIEL, Javier a. ; WEBB, Benjamin M. ; YANG, Zheng ; FERRIN, Thomas E. ; SALI, Andrej: Macromolecular assembly structures by comparative modeling and electron microscopy. In: *Methods in molecular biology (Clifton, N.J.)* 857 (2012), Januar, 331–50. – DOI 10.1007/978–1–61779–588–6_15. – ISSN 1940–6029
- [Laskowski et al. 1993] LASKOWSKI, R. A. ; MACARTHUR, M. W. ; MOSS, D. S. ; THORNTON, J. M.: PROCHECK: a program to check the stereochemical quality of protein structures. In: *Journal of Applied Crystallography* 26 (1993), April, Nr. 2, 283–291. – DOI 10.1107/S0021889892009944. – ISSN 00218898
- [Laskowski et al. 1996] LASKOWSKI, ROMANA. ; RULLMANN, J.AntoonC. ; MA-CARTHUR, MalcolmW. ; KAPTEIN, Robert ; THORNTON, JanetM.: AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. In: *Journal of Biomolecular NMR* 8 (1996), Dezember, Nr. 4, 477–86. – DOI 10.1007/BF00228148. – ISSN 0925–2738
- [Lawlor 2002] LAWLOR, D. W.: Limitation to Photosynthesis in Water-stressed Leaves: Stomata vs. Metabolism and the Role of ATP. In: *Annals of Botany* 89 (2002), Juni, Nr. 7, 871–885. – DOI 10.1093/aob/mcf110. – ISSN 03057364

- [Li u. Elledge 2007] LI, Mamie Z. ; ELLEDGE, Stephen J.: SLIC sub-cloning using T4 DNA polymerase treated inserts without RecA. In: *Protocol Exchange* (2007), Februar. – DOI 10.1038/nprot.2007.90. – ISSN 2043–0116
- [Louis-Jeune et al. 2011] LOUIS-JEUNE, Caroline ; ANDRADE-NAVARRO, Miguel A. ; PEREZ-IRATXETA, Carol: Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. In: *Proteins* (2011), September. – DOI 10.1002/prot.23188. – ISSN 1097–0134
- [McComb et al. 1976] McComb, R B.; Bond, L W.; BURNETT, R W.; KEECH, R C.; Bowers, G N.: Determination of the molar absorptivity of NADH. In: *Clinical chemistry* 22 (1976), Mârz, Nr. 2, 141–50. – ISSN 0009–9147
- [Moretti et al. 2007] MORETTI, Sebastien ; ARMOUGOM, Fabrice ; WALLACE, Iain M. ; HIGGINS, Desmond G. ; JONGENEEL, Cornelius V. ; NOTREDAME, Cedric: The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. In: *Nucleic acids research* 35 (2007), Juli, Nr. Web Server issue, W645–8. – DOI 10.1093/nar/gkm333. – ISSN 1362–4962
- [Nakanishi et al. 2005] NAKANISHI, Tsugumi ; NAKATSU, Toru ; MATSUOKA, Makoto ; SAKATA, Kanzo ; KATO, Hiroaki: Crystal structures of pyruvate phosphate dikinase from maize revealed an alternative conformation in the swivelingdomain motion. In: *Biochemistry* 44 (2005), Februar, Nr. 4, 1136–44. – DOI 10.1021/bi0484522. – ISBN 8175753927
- [Nakanishi et al. 2003] NAKANISHI, Tsugumi ; OHKI, Yasushi ; ODA, Jun'ichi ; MATSUOKA, Makoto ; SAKATA, Kanzo ; KATO, Hiroaki: Purification, crystallization and preliminary X-ray diffraction studies on pyruvate phosphate dikinase from maize. In: *Acta Crystallographica Section D Biological Crystallography* 60 (2003), Dezember, Nr. 1, 193–194. – DOI 10.1107/S0907444903026179. – ISBN 0907444903

- [Notredame et al. 2000] NOTREDAME, C ; HIGGINS, D G. ; HERINGA, J: T-Coffee: A novel method for fast and accurate multiple sequence alignment. In: *Journal* of molecular biology 302 (2000), September, Nr. 1, 205–17. – DOI 10.1006/jmbi.2000.4042. – ISSN 0022–2836
- [Ohta et al. 1997] Онта, Shozo ; USAMI, Satoru ; UEKI, Jun ; KUMASHIRO, Takashi ; KOMARI, Toshihiko ; BURNELL, Jim N.: Identification of the amino acid residues responsible for cold tolerance in Flaveria brownii pyruvate,orthophosphate dikinase. In: *FEBS Letters* 403 (1997), Februar, Nr. 1, 5–9. – DOI 10.1016/S0014–5793(97)00015–X. – ISSN 00145793
- [Pieper et al. 2011] PIEPER, Ursula ; WEBB, Benjamin M. ; BARKAN, David T. ; SCHNEIDMAN-DUHOVNY, Dina ; SCHLESSINGER, Avner ; BRABERG, Hannes ; YANG, Zheng ; MENG, Elaine C. ; PETTERSEN, Eric F. ; HUANG, Conrad C. ; DATTA, Ruchira S. ; SAMPATHKUMAR, Parthasarathy ; MADHUSUDHAN, Mallur S. ; SJÖLANDER, Kimmen ; FERRIN, Thomas E. ; BURLEY, Stephen K. ; SALI, Andrej: ModBase, a database of annotated comparative protein structure models, and associated resources. In: *Nucleic acids research* 39 (2011), Januar, Nr. Database issue, D465–74. – DOI 10.1093/nar/gkq1091. – ISSN 1362–4962
- [Provencher u. Gloeckner 1981] PROVENCHER, Stephen W. ; GLOECKNER, Juergen: Estimation of globular protein secondary structure from circular dichroism. In: *Biochemistry* 20 (1981), Januar, Nr. 1, 33–37. – DOI 10.1021/bi00504a006. – ISSN 0006–2960
- [Raghavendra u. Sage 2011] RAGHAVENDRA, Agepati S.; SAGE, Rowan F.; RAG-HAVENDRA, Agepati S. (Hrsg.); SAGE, Rowan F. (Hrsg.): Advances in Photosynthesis and Respiration. Bd. 32: C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Dordrecht : Springer Netherlands, 2011. – 201 S. http: //dx.doi.org/10.1007/978-90-481-9407-0. – ISBN 978-90-481-9406-3
- [Reeves 1968] REEVES, R E.: A new enzyme with the glycolytic function of pyruvate kinase. In: *The Journal of biological chemistry* 243 (1968), Juni, Nr. 11, 3202–4. – ISSN 0021–9258

- [Rosche u. Westhoff 1990] ROSCHE, Elke ; WESTHOFF, Peter: Primary structure of pyruvate, orthophosphate dikinase in the dicotyledonous C4 plant Flaveria trinervia. In: *FEBS letters* 273 (1990), Oktober, Nr. 1-2, 116–21. – ISSN 0014–5793
- [Salahas u. Manetas 1990] SALAHAS, G ; MANETAS, Y: Assaying for pyruvate, orthophosphate dikinase activity: Necessary precautions with. In: *Photosynthesis Research* 24 (1990), Nr. 2, 183–188. – DOI 10.1007/BF00032598
- [Sali u. Blundell 1993] SALI, A ; BLUNDELL, T L.: Comparative protein modelling by satisfaction of spatial restraints. In: *Journal of molecular biology* 234 (1993), Dezember, Nr. 3, 779–815. – DOI 10.1006/jmbi.1993.1626. – ISSN 0022–2836
- [Sharkey u. Seemann 1989] SHARKEY, T. D. ; SEEMANN, J. R.: Mild Water Stress Effects on Carbon-Reduction-Cycle Intermediates, Ribulose Bisphosphate Carboxylase Activity, and Spatial Homogeneity of Photosynthesis in Intact Leaves. In: *PLANT PHYSIOLOGY* 89 (1989), April, Nr. 4, 1060–1065. – DOI 10.1104/pp.89.4.1060. – ISSN 0032–0889
- [Shen u. Sali 2006] SHEN, Min-Yi ; SALI, Andrej: Statistical potential for assessment and prediction of protein structures. In: *Protein science : a publication of the Protein Society* 15 (2006), November, Nr. 11, 2507–24. – DOI 10.1110/ps.062416606.
 – ISSN 0961–8368
- [Shirahashi et al. 1978] SHIRAHASHI, Kenji ; HAYAKAWA, S ; SUGIYAMA, T: Cold lability of pyruvate, orthophosphate dikinase in the maize leaf. In: *Plant physiology* 62 (1978), November, Nr. 5, 826–30. – ISSN 0032–0889
- [Sreerama u. Woody 1993] SREERAMA, N ; WOODY, R W.: A self-consistent method for the analysis of protein secondary structure from circular dichroism. In: *Analytical biochemistry* 209 (1993), Februar, Nr. 1, 32–44. – DOI 10.1006/abio.1993.1079. – ISSN 0003–2697
- [Sreerama u. Woody 2000] SREERAMA, N ; WOODY, R W.: Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN,

SELCON, and CDSSTR methods with an expanded reference set. In: *Analytical biochemistry* 287 (2000), Dezember, Nr. 2, 252–60. – DOI 10.1006/abio.2000.4880. – ISSN 0003–2697

- [Wallace et al. 2006] WALLACE, Iain M. ; O'SULLIVAN, Orla ; HIGGINS, Desmond G.
 ; NOTREDAME, Cedric: M-Coffee: combining multiple sequence alignment methods with T-Coffee. In: *Nucleic acids research* 34 (2006), Januar, Nr. 6, 1692–9. DOI 10.1093/nar/gkl091. ISSN 1362–4962
- [Yankie et al. 1995] YANKIE, Linda ; XU, Yuan ; DUNAWAY-MARIANO, Debra: Location of the catalytic site for phosphoenolpyruvate formation within the primary structure of Clostridium symbiosum pyruvate phosphate dikinase. 2. Site-directed mutagenesis of an essential arginine contained within an apparent P-loop. In: *Biochemistry* 34 (1995), Februar, Nr. 7, 2188–94. DOI 10.1021/bi00007a012. ISSN 0006–2960

A.1. Nuklein- und Aminosäuresequenzen

pETEV-16b-ppdk FtPPDK-ref	ATGGGCCATCATC ATGGGCCATCATC	ATCATCATCAT ATCATCATCAT	30 FCATCATCAT FCATCATCAT	CACAGCAGCG CACAGCAGCG	GCCATGAAAA GCCATGAAAA	CCTGTATTTTCA CCTGTATTTTCA
pETEV-16b-ppdk FtPPDK-ref	70 GGGAĊATATGACC GGGACATATGACC Mde I	80 GĊTAAAAAACC GCTAAAAAACC	90 GCGTGTTTAC GCGTGTTTAC	100 GTTCGGCAAA GTTCGGCAAA	110 GGTCGCTCGG GGTCGCTCGG	120 120 AÁGGCAACCGTG AAGGCAACCGTG
pETEV-16b-ppdk FtPPDK-ref	140 ACATGAAATCGCT ACATGAAATCGCT	150 GCTGGGTGGCA GCTGGGTGGCA	160 AAAGGTĠCGA AAAGGTGCGA	170 ACCTGGĊGGA ACCTGGCGGA	180 AATGAGCTCT AATGAGCTCT	190 ATTGGTĊTGTCC ATTGGTCTGTCC
pETEV-16b-ppdk FtPPDK-ref	200 GTGCCGCCGGGTC GTGCCGCCGGGTC	210 TGACCATCTCA TGACCATCTCA	220 AACGGAAGCC AACGGAAGCC	230 TGCGAAGAAT TGCGAAGAAT	240 ATCAGCAAAA ATCAGCAAAA	250 260 TGGTAAATCGCT TGGTAAATCGCT
pETEV-16b-ppdk FtPPDK-ref	270 GCCGCCGGGCCTG GCCGCCGGGCCTG	280 TGGGATGAAAT TGGGATGAAAT	290 FCAGCGAAGG FCAGCGAAGG	300 TCTGGACTAC TCTGGACTAC	310 GTTCAGAAAG GTTCAGAAAG	320 AAATGTĊAGCCT AAATGTCAGCCT
pETEV-16b-ppdk FtPPDK-ref	330 CGCTGGGCGATCC CGCTGGGCGATCC	340 GTCGAAACCGO GTCGAAACCGO	³⁵⁰ CTGCTGCTGA CTGCTGCTGA	360 GCGTCCGTTC GCGTCCGTTC	370 TGGTGCGGCC TGGTGCGGCC	380 390 ATTAGCATGCCG ATTAGCATGCCG
pETEV-16b-ppdk FtPPDK-ref	400 GGCATGATGĠATA GGCATGATGGATA	410 CCGTTCTGAAC CCGTTCTGAAC	420 CCTGGGTCTG CCTGGGTCTG	430 AATGACGAAG AATGACGAAG	440 TGGTTGCAGG TGGTTGCAGG	450 TCTGGCĊGGTAA TCTGGCCGGTAA
pETEV-16b-ppdk FtPPDK-ref	460 ATCGGGTGCTCGT ATCGGGTGCTCGT	470 TTCGCGTATGA TTCGCGTATGA	480 ATAGCTACCG ATAGCTACCG	490 TCGCTTTCTG TCGCTTTCTG	500 GÁCATGTTCG GACATGTTCG	510 520 GTAACGTCGTGA GTAACGTCGTGA
pETEV-16b-ppdk FtPPDK-ref	530 TGGGCATCCCGCA TGGGCATCCCGCA	540 TAGCCTĠTTTC TAGCCTGTTTC	550 GATGAAAAAC GATGAAAAAC	560 TGGAACAGAT TGGAACAGAT	570 GAAAGCCGAA GAAAGCCGAA	₅‱ AAAGGTÀTTCAC AAAGGTATTCAC

pETEV-16b-ppdk FtPPDK-ref	590 CTGGATACCO CTGGATACCO	600 GACCTGACGGG GACCTGACGGG	610 CAGCTĠATCT CAGCTGATCT	GAAAGACCTO GAAAGACCTO	630 GGTGGAAAAAT GGTGGAAAAAT	640 ATAAAAACGT ⁻ ATAAAAACGT ⁻	⁶⁵⁰ TTACGṫ TTACGT
pETEV-16b-ppdk FtPPDK-ref	CGAAGCGAAA CGAAGCGAAA	0 6 GGCGAAAAA GGCGAAAAA	TCCCGACCO	680 ATCCGAAAAA ATCCGAAAAA	690 AACAGCTGGAA AACAGCTGGAA	700 7 CTGGCCGTCA/ CTGGCCGTCA/	10 ATGCAG ATGCAG
pETEV-16b-ppdk FtPPDK-ref	720 TGTTTGATAG TGTTTGATAG	730 GTTGGGACTC(GTTGGGACTC(740 CCCGCGTGCC CCCGCGTGCC	750 CAACAAATAT(CAACAAATAT(760 CGCTCCATTAA CGCTCCATTAA	770 TCAGATCACCO TCAGATCACCO	780 GGTCTĠ GGTCTG
pETEV-16b-ppdk FtPPDK-ref	AAAGGCACGG AAAGGCACGG	0 8 CAGTGAATA CAGTGAATA	‱ TTCAATCTAT TTCAATCTAT	⁸¹⁰ GGTTTTCGG GGTTTTCGG	⁸²⁰ TAACATGGGCA TAACATGGGCA	830 8 ÁTACCAGTGG(ATACCAGTGG(40 CACGGG CACGGG
pETEV-16b-ppdk FtPPDK-ref	850 TGTGCTGTTT TGTGCTGTTT	860 ACCCGTAAC(ACCCGTAAC(870 CCGAGCACGO CCGAGCACGO	880 GCGAGAAAA GCGAGAAAAA	890 AACTGTÁCGGC AACTGTACGGC	900 GAATTCCTGA GAATTCCTGA	910 TTAATĠ TTAATG
pETEV-16b-ppdk FtPPDK-ref	22 CCCAGGGTGA CCCAGGGTGA	agatgttgt Agatgttgt Agatgttgt	30 CGCAGGCATC CGCAGGCATC	940 CGCACCCCG CGCACCCCG	950 GAAGATCTGGG GAAGATCTGGG	960 9 TACCATGGAA/ TACCATGGAA/	70 ACGTGC ACGTGC
pETEV-16b-ppdk FtPPDK-ref	980 ATGCCGGAAG ATGCCGGAAG	990 GCGTATAAAG GCGTATAAAG	1000 AACTGGTGGA AACTGGTGGA	1010 AAACTGTGAA AAACTGTGAA	1020 AATTCTĠGAAC AATTCTGGAAC	1030 GTCATTACAAA GTCATTACAAA	1040 AGATAT AGATAT
pETEV-16b-ppdk FtPPDK-ref	GATGGACATO GATGGACATO GATGGACATO	GAATTCACCO	GTTCAGGAAA GTTCAGGAAA GTTCAGGAAA	1070 ATCGCCTGTC ATCGCCTGTC	1080 1 GGATGCTGCAA GGATGCTGCAA	090 11 TGTCGTACCG(TGTCGTACCG(GTAAAC GTAAAC
pETEV-16b-ppdk FtPPDK-ref	1110 GCACGGGCAA GCACGGGCAA	AGGTGCTGT AGGTGCTGT	1130 GCGTATTGCG GCGTATTGCG	1140 GTTGATATGO GTTGATATGO	1150 GTCAACGAAGG GTCAACGAAGG	1160 CCTGATTGAC/ CCTGATTGAC/	ACCCGT ACCCGT ACCCGT
pETEV-16b-ppdk FtPPDK-ref	ACGGCAATCA ACGGCAATCA ACGGCAATCA	AACGCGTTG	190 AAACCCAGCA AAACCCAGCA	1200 TCTGGATCAA TCTGGATCAA	ACTGCTGCACC	220 12 CGCAGTTCGA/ CGCAGTTCGA/	AGACCC AGACCC
pETEV-16b-ppdk FtPPDK-ref	1240 GTCAGCGTAT GTCAGCGTAT	1250 AAATCGCAT(AAATCGCAT(1260 GTGGTTGCCA GTGGTTGCCA	1270 CCGGTCTGCC CCGGTCTGCC	1280 CGGCATCCCCG CGGCATCCCCG	1290 GGTGCÁGCAG GGTGCAGCAG	1300 TGGGCC TGGGCC
pETEV-16b-ppdk FtPPDK-ref	AGGTTTGCTT AGGTTTGCTT AGGTTTGCTT	10 11 TTCAGCTGAA TTCAGCTGAA	320 AGATGCGGAA AGATGCGGAA	1330 ACGTGGCACO ACGTGGCACO	1340 1 GCTCAGGGTAA GCTCAGGGTAA	ATCCGCGATCO ATCCGCGATCO	GTGGTG CTGGTG CTGGTG
pETEV-16b-ppdk FtPPDK-ref	1370 CGCACCGAAA CGCACCGAAA	1380 CGTCACCGGA CGTCACCGGA	1390 AAGATĠTTGG AAGATGTTGG	1400 GCGGTATGCA GCGGTATGCA	1410 FGCAGCTGCGG FGCAGCTGCGG	1420 GCATTCTGACC GCATTCTGACC	1430 CGCACG CGCACG
pETEV-16b-ppdk FtPPDK-ref	TGGCGGTATO TGGCGGTATO	ACGTCCCAC	450 GCAGCAGTCO GCAGCAGTCO	1460 TGGCTCGCGG TGGCTCGCGG	1470 1 GCTGGGGGTAAA GCTGGGGTAAA	.480 14 TGCTGTGTCT(TGCTGTGTCT(490 CAGGTT CAGGTT

pETEV-16b-ppdk FtPPDK-ref	1500 GTGCGGATATO GTGCGGATATO	1510 CCGTGTGAAC CCGTGTGAAC	1520 CGATGACATGA CGATGACATGA	1530 AAAATCTTCA(AAAATCTTCA(1540 CCATCGGTGAT CCATCGGTGAT	1550 CGCGTGATC CGCGTGATC	1560 AAAGAA AAAGAA
pETEV-16b-ppdk FtPPDK-ref	1570 GGCGACTGGCT GGCGACTGGCT	IS GAGCCTGA GAGCCTGA	ACGGTACCACO	GGCGAAGTT	00 16 ATTCTGGGTAA ATTCTGGGTAA	ACAGCTGCT	IGCACC GGCACC
pETEV-16b-ppdk FtPPDK-ref	1630 GCCGGCAATGT GCCGGCAATGT	1640 CTAATGATC CTAATGATC	1650 CTGGAAATCT CTGGAAATCT	1660 FTATGÁGTTGO FTATGAGTTGO	1670 GGCTGACCAGG GGCTGACCAGG	1680 GCGCGTCGCC GCGCGTCGCC	1690 TGAAAG TGAAAG
pETEV-16b-ppdk FtPPDK-ref	TGATGGCTAAC TGATGGCTAAC	IT CGCGGATACO CGCGGATACO	CCCGAATGACC CCCGAATGACC	20 11 GCCCTGACGGG GCCCTGACGGG	30 17 CACGTAACAAT CACGTAACAAT	40 GGTGCACAG GGTGCACAG	I750 GGTATT GGTATT
pETEV-16b-ppdk FtPPDK-ref	1760 GGTCTGTGCCC GGTCTGTGCCC	1770 GTACĊGAACA GTACCGAACA	1780 ACATGTTTTTC ACATGTTTTTC	1790 CGCTTCTGAT(CGCTTCTGAT(1800 GAACGTATTAA GAACGTATTAA	1810 AGCGĠTCCG AGCGGTCCG	1820 ICAAAAT ICAAAAT
pETEV-16b-ppdk FtPPDK-ref	GATCATGGCCC GATCATGGCCC	TGACGCCGG	GAACAGCGTAA GAACAGCGTAA GAACAGCGTAA	AGTTGCTCT AGTTGCTCT	GGATCTGCTGC GGATCTGCTGC GGATCTGCTGC	TGCCGTATC	AACGTA AACGTA
pETEV-16b-ppdk FtPPDK-ref	1890 GTGACTTTGAA GTGACTTTGAA	1900 AGGTÁTTTTC AGGTATTTTC	1910 CCGCGCAATGO CCGCGCAATGO	1920 GATGGCCTGCC GATGGCCTGCC	1930 CGGTGACCATC CGGTGACCATC	1940 CCGTCTGCTG CCGTCTGCTG	1950 GATCCG GATCCG
pETEV-16b-ppdk FtPPDK-ref	CCGCTGCATGA CCGCTGCATGA	ATTTCTGCC ATTTCTGCC	CGGAAGGTGA CGGAAGGTGA	CTGGAACAC/	90 20 ATTGTTAACGA ATTGTTAACGA	ACTGGCAGT	CGATAC CGATAC
pETEV-16b-ppdk FtPPDK-ref	2020 GGGCATGAGCO GGGCATGAGCO	2030 GCTGACGAAA GCTGACGAAA	2040 ATCTACTCTA ATCTACTCTA	2050 AAATCGAAAAG AAATCGAAAAG	2060 CCTGAGTGAAG CCTGAGTGAAG	2070 GTTAATCCGA GTTAATCCGA	2080 TGCTGG TGCTGG
pETEV-16b-ppdk FtPPDK-ref	2090 GTTTCCGTGGC GTTTCCGTGGC	21 CTGTCGCCTC CTGTCGCCTC	GGGTATTTCG GGGTATTTCG GGGTATTTCG	TACCCGGAAC TACCCGGAAC	20 21 TGACCGAAATG TGACCGAAATG	GCAGGTTCGT GCAGGTTCGT	GCCATC GCCATC GCCATC
pETEV-16b-ppdk FtPPDK-ref	2150 TTTCAAGCTGC TTTCAAGCTGC	2160 CGGTCAGCAT CGGTCAGCAT	2170 FGACCAACCAO FGACCAACCAO	2180 GGGTGTGACGO GGGTGTGACGO	2190 GTTATTCCGGA GTTATTCCGGA	2200 AATCATGGT AATCATGGT	2210 CCCGCT CCCGCT
pETEV-16b-ppdk FtPPDK-ref	2220 GGTTGGCACCO GGTTGGCACCO	22 CCGCAGGAAC CCGCAGGAAC	230 22 CTGCGTCACC/ CTGCGTCACC/	AAATTTCTGT AAATTTCTGT	TATCCGCGGCG	GTCGCCGCAA GTCGCCGCAA	2270 ATGTGT ATGTGT
pETEV-16b-ppdk FtPPDK-ref	2280 TTGCGGAAATO TTGCGGAAATO	2290 GGGTGTCACC GGGTGTCACC	2300 CCTGGAATATA CCTGGAATATA	2310 AAAGTGGGCAG AAAGTGGGCAG	2320 CGATGATTGAA CGATGATTGAA	2330 ATCCCGCGT ATCCCGCGT	2340 GCTGCG GCTGCG
pETEV-16b-ppdk FtPPDK-ref	2350 CTGATTGCGGA CTGATTGCGGA	23 AGGAAATCGO AGGAAATCGO	GTAAAGAAGCO	GATTTCTTT/	AGCTTTGGCAC	© CCAACGACCT CCAACGACCT	GACCCA GACCCA

pETEV-16b-ppdk FtPPDK-ref	2410 GATGACGTTCGG GATGACGTTCGG	2420 TTATAGTCGC TTATAGTCGC	2430 GATGACGTGO GATGACGTGO	2440 GGCÁAATTTCT GGCAAATTTCT	2450 GCAAATTTAC GCAAATTTAC	2460 CTGGCCCAGGO CTGGCCCAGGO	2470 GTA GTA
pETEV-16b-ppdk FtPPDK-ref	2480 TCCTGCAACATG TCCTGCAACATG	2490 ATCCGTTTGA ATCCGTTTGA	2500 AGTTATTĠAC AGTTATTGAC	2510 CCAGAAAGGCO CCAGAAAGGCO	2520 GTCGGTCAACT GTCGGTCAACT	2530 GATCAAAATGO GATCAAAATGO	GCA GCA
pETEV-16b-ppdk FtPPDK-ref	2540 ACCGAAAAAGGC ACCGAAAAAGGC	2550 CGCGCCGCAA CGCGCCGCAA	2560 ATCCGAGTCT ATCCGAGTCT	2570 FGAAAGTGGGT FGAAAGTGGGT	2580 ATTTGCGGCG ATTTGCGGCG	2590 AACACGGCGGT AACACGGCGGT	2600 G A G A
pETEV-16b-ppdk FtPPDK-ref	2610 ACCGAGTTCCGT ACCGAGTTCCGT	2620 GGCGTTTTTC GGCGTTTTTC	2630 GATGGCGTTC GATGGCGTTC	2640 GGTCTGGACTA GGTCTGGACTA	2650 ACGTTAGTTGT ACGTTAGTTGT	2660 TCCCCGTTTCG TCCCCGTTTCG	GTG GTG
pETEV-16b-ppdk FtPPDK-ref	2670 TCCCGATTGCCC TCCCGATTGCCC	2680 GTCTGGCTGC GTCTGGCTGC	2690 CGCCCAAGTC CGCCCAAGTC	2700 GATTGTTTAAC GATTGTTTAAC	2710 CTCGAGGATCC CTCGAGGATCC BamH I		

Abbildung A.1.: Sequenzalignment der PPDK-kodierenden Sequenz im Vektor pETEV-16b-ppdk und der Referenzsequenz

	Nukleotid-Bindedomäne						
F. trinervia F. brownii Zea mays C. symbiosum Konservierung	10 20 30 40 50 60 KKRVFTFGKGRSEGNRDMKSLLGGKGANLAEMASIGLSVPPGLTISTEACEEYQQNGKSL KKRVFTFGKGNSEGNKDMKSLLGGKGANLAEMASIGLSVPPGLTISTEACEEYQQNGKSL KKRVFHFGKGKSEGNKTMKELLGGKGANLAEMASIGLSVPPGFTVSTEACQQYQDAGCAL KKRVFFFGKGKSEGNKTMKELLGGKGANLAEMASIGLSVPPGFTVSTEACQQYQDAGCAL .KWVYKFEEGNASMRNLLGGKGCNLAEMTILGMPIPQGFTVTTEACTEYYNSGKQI						
F. trinervia F. brownii Zea mays C. symbiosum Konservierung	Nukleotid-Bindedomäne ⁹⁰ ¹⁰⁰ ¹¹⁰ ¹¹⁰ ¹²⁰ ¹						
F. trinervia F. brownii Zea mays C. symbiosum Konservierung	Nukleotid-Bindedomäne 130 140 150 160 170 GLACKSG.ARFAYDSYRFLDMFGNVVMGIPHSLFDEKLEQMKAEKGIHLDTDLTAADLK GLAAKSG.ARFAYDSYRFLDMFGNVVMGIPHSLFDEKLEQMKAEKGIHLDTDLTAADLK GLAAKSG.ERFAYDSFRRFLDMFGNVVMDIPRSLFEEKLEHMKESKGLKNDTDLTASDLK GFAKMTGNPRFAYDSYRRFIQMYSDVVMEVPKSHFEKIIDAMKEEKGVHFDTDLTADDLK						
F. trinervia F. brownii Zea mays C. symbiosum Konservierung	Nukleotid-Bindedomäne 180 190 200 210 220 230 DLVEKYKNVYVEA.KGEKFPTDPKKQLELAVNAVFDSWDSPRANKYRSINQITGLKGTAV DLAEQYKNVYVEA.KGEKFPTDPKKQLELAVNAVFDSWDSPRANKYRSINQITGLKGTAV ELVGQYKEVYLSA.KGEPFPSDPKKQLELAVLAVFNSWESPRAKKYRSINQITGLRGTAV ELAEKFKAVYKEAMNGEEFPQEPKDQLMGAVKAVFRSWDNPRAIVYRRMNDIPGDWGTAV						
F. trinervia F. brownii Zea mays C. symbiosum Konservierung	Nukleotid-Bindedomäne 240 250 260 270 280 290 NIQSMVFGNMGNTSGTGVLFTRNPSTGEKKLYGEFLINAQGEDVVAGIRTPEDLGTMETC NIQCMVFGNMGNTSGTGVLFTRNPSTGEKKLYGEFLVNAQGEDVVAGIRTPEDLVTMETC NVQCMVFGNMGNTSGTGVLFTRNPNTGEKKLYGEFLVNAQGEDVVAGIRTPEDLDAMKNL NVQTMVFGNKGETSGTGVAFTRNPSTGEKGIYGEYLINAQGEDVVAGVRTPQPITQLEND						
F. trinervia F. brownii Zea mays C. symbiosum Konservierung	Nukleotid-Bindedomäne 300 310 320 330 340 350 MPEAYKELVENCEILERHYKDMMDIEFTVQENRLWMLQCRTGKRTGKGAVRIAVDMVNEG MPEAYRELVENCVILERHYKDMMDIEFTVQENRLWMLQCRTGKRTGKGAVRIAVDMVNEG MPQAYDELVENCNILESHYKEMODIEFTVQENRLWMLQCRTGKRTGKGAVKIAVDMVNEG MPDCYKQFMDLAMKLEKHFRDMQDMEFTIEEGKLYFLQTRNGKRTAPAALQIACDLVDEG						
F. trinervia F. brownii Zea mays C. symbiosum Konservierung	Nukleotid-Bindedomäne Phosphohistidin-Domäne ³⁶⁰ ³⁷⁰ ³⁸⁰ ³⁰⁰ ⁴⁰⁰ ⁴¹⁰ LÍDTRTAIKRVÉTQHLDQLLHPQFEDPSAYK.SHVVATGLPASPGAAVGQVCFSAEDAET LIDTRTAIKRVETQHLDQLLHPQFENPSAYK.SHVVATGLPASPGAAVGQVVFSAEDAET LVEPRSAIKMVEPGHLDQLLHPQFENPSAYK.DQVIATGLPASPGAAVGQVVFTAEDAEA MITEEEAVVRIEAKSLDQLLHPTF.NPAALKAGEVIGSALPASPGAAAGKVYFTADEAKA						

F. trinervia F. brownii Zea mays C. symbiosum Konservierung	⁴²⁰ WHAQGKSAIL WHAQGKSAIL WHSQGKAALL AHEK©ERVIL	VRTETSPED VRTETSPED VRAETSPED VRAETSPED VRLETSPED	Phosphohisi 440 (GGMHAAAGIU (GGMHAAAGIU (GGMHAA <mark>W</mark> GIU (GGMHAA <mark>W</mark> GIU	tidin-Domäne ⁴⁵⁰ TARGGMTSH TARGGMTSH TERGGMTSH T <mark>V</mark> RGGMTSH	⁴⁶⁰ AAVVARGWGK(AAVVARGWGK(AAVVAR <mark>W</mark> WGK AAVVARGMGT(470 CCVSGCADIRV CCVSGCADIRV CCVSGC <mark>SGIRV</mark> CCVSGC <mark>G</mark> EI <mark>K</mark> T
F. trinervia F. brownii Zea mays C. symbiosum Konservierung	480 NDDMKIFTIG NDDMKVFTIG NDAEKLVTIG NEEAKTFELG	Phosphohist 490 DRVIKEGDWL DRVIKEGDWL SHVLREGEWL GHTFAEGDYJ	idin-Domäne ⁵⁰⁰ SLNGITGEVI SLNGSTGEVI SLNGSTGEVI SLDGSTGKIY	510 ILGKQLLAPP ILGKQPLSPP ILGKQPLSPP IKGDIETQEA	PEP/Pyruvat ⁵²⁰ AMSNDLEIFMS AMSNDLETFMS ALSGDLGTFM/ SV <mark>SG</mark> SFERIM	-Bindedomäne ⁵³⁰ WADQARRLKV WADQARRLKV WADQARRLKV WADKFRTLKV
F. trinervia F. brownii Zea mays C. symbiosum Konservierung	540 MANADTPNDA MANADTPNDA LANADTPDDA RTNADTPEDT	550 L TÁRNNGAQQ L TARNNGAQQ L TARNNGAQQ NAVKLGAEQ	PEP/Pyruvat 550 BIGLCRTEHM BIGLCRTEHM BIGLCRTEHM BIGLCRTEHM	-Bindedomän ⁵⁷⁰ FASDERIKA FASDERIKA FASDERIKA FEAD.RIMK	e VRKMIMAVTPP VRKMIMAVTPP VRQMIMAPTL IRKMILSDSV	590 EQRKVALDLLL CQRKAALDLL LRQQALDRLL AREEALNELT
F. trinervia F. brownii Zea mays C. symbiosum Konservierung	⁶⁰⁰ PYQRSDFEGI PYQRSDFEGI TYQRSDFEGI PFQKGDFK	⁶¹⁰ FRAMDGLPVT FRAMDGLPVT FRAMDGLPVT YKALEGRPMT	PEP/Pyruvat 620 IRLLDPPLH IRLLDPPLH IRLLDHPSY VRYLDPPLH	-Bindedomän ⁶³⁰ FLPEGDLEH FLPEGNIED FLPEGNIED FV <mark>P</mark> HTEEE.	e IVNELAVDTGN IVNELADTGN IVSELCAETG .QAELAKNMGL	⁶⁵⁰ ISADEIYSKIE ISKDEIYSRIE NQEDAL <mark>ARIE</mark> TLAEVK <mark>A</mark> KVD
F. trinervia F. brownii Zea mays C. symbiosum Konservierung	NLSEVNPMLG KLSEVNPMLG KLSEVNPMLG ELHEFNPMMG	670 FRGCRLGISY FRGCRLGISY FRGCRLGISY HRGCRL <mark>A</mark> VTY	PEP/Pyruvat ⁶⁸⁰ (PELTEMQVR/ (PELTEMQVR/ (PELTEMQR/ (PELTEMQR/ (PEIAKMQTR/	-Bindedomän ⁶⁹⁰ AIFQAAVSMT AIFQAAVSMN AIFEAAIAMT VMEAAIEVK	e N.QGVTVIPE N.QGVTVIPE N.QGVQVFPE EET <mark>G</mark> IDIVPE	⁷¹⁰ IMVPLVGTPQE IMVPLVGTPQE IMVPLVGTPQE IM <mark>I</mark> PLVG <mark>EKK</mark> E
F. trinervia F. brownii Zea mays C. symbiosum Konservierung	⁷²⁰ LRHQISVIRG LRHQIGVIRG LCHQVTLIRQ LKFVKDVVVE	⁷³⁰ VAANVFAEMO VAANVFAEMO VAEKVFANVO VAEQVKKEKO	PEP/Pyruvat 740 VTLEYKVGTN LTLEYKVGTN KTIGYKVGTN SDMQVHIGTN	-Bindedomän ⁷⁵⁰ 1IEIPRAALI 1IEIPRAALI 1IEIPRAALV 1IEIPRAALT	e 760 A E E T <mark>G</mark> KE A DF F A DE I A KE A EF F A DA I A E E A EF F A DA I A E E A EF F	770 FSFGTNDLTQM FSFGTNDLTQM FSFGTNDLTQM FSFGTNDLTQM
F. trinervia F. brownii Zea mays C. symbiosum Konservierung	780 TFGYSRDDVG TFGYSRDDVG TFGYSRDDVG TFGFSRDDAG	790 KFLQIYLAQQ KFLPIYLSQQ KFIPVHLAQQ KFLDSYYKAK	PEP/Pyruvat 800 GILQHDPFEV GILQHDPFEV GILQHDPFEV GIYESDPFAR	-Bindedomän ⁸¹⁰ DQKĠVGQLI DQKGVGQLI DQRGVGELV DQTGVGQLV	e KMATEKGRAA KMATEKGRAA K <mark>F</mark> ATERGRKA EMAVKKGRQT	⁸³⁰ P <mark>SLKVGICGE</mark> PNLKVGICGE PNLKVGICGE P <mark>G</mark> LK <mark>C</mark> GICGE

Abbildung A.2.: Multiples Alignment der Aminosäuresequenzen der PPDKs aus *F. trinervia*, *F. brownii, Zea mays* und *C. symbiosum*. Sequenzidentitäten sind farbkodiert dargestellt: 100 % Identität (violett), 75 % (blau) und 50 % (rosa).

A.2. Evalutation der Homologiemodelle

Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms and R-factor no greater than 20% , a good quality model would be expected to have over 90% in the most favoured regions.

Abbildung A.3.: Ramachandran-Plot des von Zea mays abgeleiteten Homologiemodells

Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms and R-factor no greater than 20%, a good quality model would be expected to have over 90% in the most favoured regions.

Abbildung A.4.: Ramachandran-Plot des von C. symbiosum abgeleiteten Homologiemodells

B. Danksagung

Ich bedanke mich bei Herrn Prof. Dr. Georg Groth für das mir entgegengebrachte Vertrauen, die interessante und fordernde Fragestellung, sowie die Denkanstöße zur richtigen Zeit. Herrn Prof. Dr. Holger Gohlke gilt mein Dank für die Übernahme des Zweitgutachtens und die Betreuung meines Forschungspraktikums. Ohne die Fertigkeiten, die mir während dieses Praktikums vermittelt wurden, wäre die Erstellung der Homologiemodelle weitaus schwieriger gewesen.

Darüberhinaus danke ich der gesamten Arbeitsgruppe für jegliche erbrachte Unterstützung, den freundlichen Umgang miteinander und insbesondere Mareike dafür, dass wir wieder einmal eine Abschlussarbeit "im Tandem" absolvieren konnten.

Ich danke Benni, Mel und Daniel dafür, dass sie mir jederzeit mit Rat und Tat zur Seite gestanden haben. Es gibt wirklich keine Frage, die nicht einer von Euch beantworten kann. Danke! Mel gilt mein besonderer Dank, da sie einmal mehr – in Ermangelung einer eigenen S2-Einweisung – die CD-Spektren für mich aufgenommen hat.

Ohne Christian und Judith wäre der Aktivitätstest in dieser Form nicht möglich gewesen. Danke Christian, dass ich Deine Vorräte an PEPCase plündern durfte.

Zu guter letzt möchte ich auch Patricia danken, ohne die sicherlich unsere Chemikalienbestände dauerhaft leer wären. Danke auch, dass ich mir immer mal wieder etwas von Dir ausborgen durfte, von der Pipette bis zum Puffer. Danke Euch allen!

C. Erklärung

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbstständig verfasst und keine anderen, als die angegebenen Quellen und Hilfsmittel benutzt habe. Alle Stellen, die ich aus den Quellen wörtlich oder inhaltlich entnommen habe, sind als solche kenntlich gemacht.

Alexander Ralph Michael Minges

Düsseldorf, 4. Oktober 2012