mirror of
https://github.com/Athemis/PyDSF.git
synced 2025-04-04 22:36:02 +00:00
Made peak finding more robust; round to 2 digits
This commit is contained in:
parent
c3c172c59a
commit
5a17c960c2
2 changed files with 17 additions and 12 deletions
26
pydsf.py
26
pydsf.py
|
@ -1,7 +1,6 @@
|
|||
#! /usr/bin/env python2
|
||||
# -*- coding: utf-8 -*-
|
||||
import csv
|
||||
import multiprocessing as mp
|
||||
|
||||
try:
|
||||
import matplotlib as mpl
|
||||
|
@ -24,9 +23,8 @@ except ImportError:
|
|||
raise ImportError('----- NumPy must be installed. -----')
|
||||
|
||||
try:
|
||||
from scipy.signal import filtfilt, butter
|
||||
from scipy.signal import filtfilt, butter, find_peaks_cwt
|
||||
from scipy import interpolate
|
||||
from scipy import optimize
|
||||
except ImportError:
|
||||
raise ImportError('----- SciPy must be installed. -----')
|
||||
|
||||
|
@ -86,7 +84,7 @@ class Well:
|
|||
self.owner.denatured_wells.append(self)
|
||||
|
||||
if self.owner.tm_cutoff_low != self.owner.t1 or self.owner.tm_cutoff_high != self.owner.t1:
|
||||
x = np.arange(self.owner.tm_cutoff_low, self.owner.tm_cutoff_high + 1, self.owner.dt, dtype=float)
|
||||
x = np.arange(self.owner.tm_cutoff_low, self.owner.tm_cutoff_high + 1, self.owner.dt, dtype=np.dtype(np.float))
|
||||
|
||||
x = self.owner.temprange
|
||||
y = self.derivatives[1]
|
||||
|
@ -95,16 +93,26 @@ class Well:
|
|||
y = y - self.baseline
|
||||
|
||||
try:
|
||||
peak_indexes = peakutils.indexes(y, min_dist=len(x)) # calculate a rough estimate of peaks; set min_dist
|
||||
# temperature range to only find one/the highest peak
|
||||
tm = peakutils.interpolate(x, y, ind=peak_indexes)[0] # increase resolution by fitting gaussian function
|
||||
# to peak
|
||||
peak_indexes = peakutils.indexes(y, thres=0.3)
|
||||
|
||||
# loop over results to find maximum value for peak candidates
|
||||
max_y = None
|
||||
max_i = None
|
||||
for peak in peak_indexes:
|
||||
if not max_y or y[peak] > max_y:
|
||||
max_y = y[peak]
|
||||
max_i = peak
|
||||
|
||||
if y[max_i] > 0: # if value of second derivative is positive, choose identified position as peak candidate
|
||||
tm = x[max_i]
|
||||
else:
|
||||
return np.NaN # else discard
|
||||
except:
|
||||
return np.NaN # In case of error, return no peak
|
||||
|
||||
try:
|
||||
# Check if the peak is within cutoff range
|
||||
if tm and tm >= self.owner.tm_cutoff_low and tm <= self.owner.tm_cutoff_high:
|
||||
tm = round(peakutils.interpolate(x, y, width=3, ind=[max_i])[0], 2)
|
||||
self.owner.denatured_wells.remove(self) # If everything is fine, remove the denatured flag
|
||||
return tm # and return the Tm
|
||||
else:
|
||||
|
|
|
@ -143,9 +143,6 @@ class MainWindow(QMainWindow, Ui_MainWindow):
|
|||
else:
|
||||
self.tabWidget.setTabEnabled(i, False)
|
||||
|
||||
#for i in range(self.tabWidget.count()):
|
||||
# self.tabWidget.widget(i).canvas.clear()
|
||||
|
||||
#fig, ax = figures[0]
|
||||
#self.tabWidget.widget(0).canvas.fig = fig
|
||||
#self.tabWidget.widget(0).canvas.ax = ax
|
||||
|
|
Loading…
Add table
Reference in a new issue