mirror of
https://github.com/Athemis/PyDSF.git
synced 2025-04-05 14:46:03 +00:00
Adding comments; Proper error handling
This commit is contained in:
parent
a5eb072d4a
commit
a28142fa1e
1 changed files with 89 additions and 26 deletions
115
pydsf.py
115
pydsf.py
|
@ -1,7 +1,11 @@
|
||||||
#! /usr/bin/env python
|
#! /usr/bin/env python
|
||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
# Import csv library; Part of python standard libs
|
||||||
import csv
|
import csv
|
||||||
|
|
||||||
|
# Import 3rd party packages. Check if installed and die with error message
|
||||||
|
# if not.
|
||||||
try:
|
try:
|
||||||
import matplotlib as mpl
|
import matplotlib as mpl
|
||||||
import mpl_toolkits.axes_grid1
|
import mpl_toolkits.axes_grid1
|
||||||
|
@ -30,10 +34,13 @@ except ImportError:
|
||||||
|
|
||||||
|
|
||||||
class Well:
|
class Well:
|
||||||
|
"""
|
||||||
def __init__(self, owner):
|
Represents a well in a microtiter plate.
|
||||||
|
Owned by an object of type 'Plate'.
|
||||||
|
"""
|
||||||
|
def __init__(self, owner, name=None):
|
||||||
self.owner = owner
|
self.owner = owner
|
||||||
self.name = None
|
self.name = name
|
||||||
self.raw = np.zeros(self.owner.reads, dtype=np.float)
|
self.raw = np.zeros(self.owner.reads, dtype=np.float)
|
||||||
self.filtered = np.zeros(self.owner.reads, dtype=np.float)
|
self.filtered = np.zeros(self.owner.reads, dtype=np.float)
|
||||||
self.derivatives = np.zeros((4, self.owner.reads))
|
self.derivatives = np.zeros((4, self.owner.reads))
|
||||||
|
@ -49,25 +56,42 @@ class Well:
|
||||||
"""
|
"""
|
||||||
Apply a filter to the raw data
|
Apply a filter to the raw data
|
||||||
"""
|
"""
|
||||||
b, a = butter(3, 0.3)
|
try:
|
||||||
self.filtered = filtfilt(b, a, self.raw)
|
b, a = butter(3, 0.3)
|
||||||
|
self.filtered = filtfilt(b, a, self.raw)
|
||||||
|
except Exception as err:
|
||||||
|
print('Filtering of raw data failed!', err)
|
||||||
|
|
||||||
def calc_spline(self, y):
|
def calc_spline(self, y):
|
||||||
"""
|
"""
|
||||||
Calculate a spline that represents the smoothed data points
|
Calculate a spline that represents the smoothed data points
|
||||||
"""
|
"""
|
||||||
t_range = self.owner.temprange
|
try:
|
||||||
spline = interpolate.InterpolatedUnivariateSpline(t_range, y)
|
t_range = self.owner.temprange
|
||||||
return spline
|
spline = interpolate.InterpolatedUnivariateSpline(t_range, y)
|
||||||
|
return spline
|
||||||
|
except Exception as err:
|
||||||
|
print('Calculation of spline failed! ', err)
|
||||||
|
|
||||||
def calc_derivatives(self, spline='filtered'):
|
def calc_derivatives(self, spline='filtered'):
|
||||||
for t in self.owner.temprange:
|
"""
|
||||||
temp = self.splines[spline].derivatives(t)
|
Calculates derivatives of a function, representing the raw data.
|
||||||
for i in range(4):
|
Defaults to using the filtered raw data.
|
||||||
self.derivatives[i, t - self.owner.t1] = temp[i]
|
"""
|
||||||
|
try:
|
||||||
|
# iterate over temperature range (x values)
|
||||||
|
for t in self.owner.temprange:
|
||||||
|
temp = self.splines[spline].derivatives(t)
|
||||||
|
for i in range(4):
|
||||||
|
self.derivatives[i, t - self.owner.t1] = temp[i]
|
||||||
|
except Exception as err:
|
||||||
|
print('Calculation of derivatives failed!', err)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def calc_baseline(y):
|
def calc_baseline(y):
|
||||||
|
"""
|
||||||
|
Calculate baseline of the well. Used for peak identification.
|
||||||
|
"""
|
||||||
try:
|
try:
|
||||||
baseline = peakutils.baseline(y)
|
baseline = peakutils.baseline(y)
|
||||||
return baseline
|
return baseline
|
||||||
|
@ -85,36 +109,49 @@ class Well:
|
||||||
# First assume that the well is denatured
|
# First assume that the well is denatured
|
||||||
self.owner.denatured_wells.append(self)
|
self.owner.denatured_wells.append(self)
|
||||||
|
|
||||||
|
# If a temperatur cutoff has been set and the minimum/maximum
|
||||||
|
# temperature values of the provided data is not within that range,
|
||||||
|
# cut data accordingly.
|
||||||
if (self.owner.tm_cutoff_low != self.owner.t1 or
|
if (self.owner.tm_cutoff_low != self.owner.t1 or
|
||||||
self.owner.tm_cutoff_high != self.owner.t1):
|
self.owner.tm_cutoff_high != self.owner.t1):
|
||||||
x = np.arange(self.owner.tm_cutoff_low,
|
x = np.arange(self.owner.tm_cutoff_low,
|
||||||
self.owner.tm_cutoff_high + 1,
|
self.owner.tm_cutoff_high + 1,
|
||||||
self.owner.dt,
|
self.owner.dt,
|
||||||
dtype=np.dtype(np.float))
|
dtype=np.dtype(np.float))
|
||||||
|
# Otherwise use the whole temperature range of the data
|
||||||
|
else:
|
||||||
|
x = self.owner.temprange
|
||||||
|
|
||||||
x = self.owner.temprange
|
# Use second derivative as y
|
||||||
y = self.derivatives[1]
|
y = self.derivatives[1]
|
||||||
|
|
||||||
|
# Substract baseline from y
|
||||||
if self.baseline_correction:
|
if self.baseline_correction:
|
||||||
y = y - self.baseline
|
y = y - self.baseline
|
||||||
|
|
||||||
|
# Run peak finding; return NaN in case of error
|
||||||
try:
|
try:
|
||||||
peak_indexes = peakutils.indexes(y, thres=0.3)
|
peak_indexes = peakutils.indexes(y, thres=0.3)
|
||||||
|
|
||||||
# loop over results to find maximum value for peak candidates
|
# loop over results to find maximum value for peak candidates
|
||||||
max_y = None
|
max_y = None # current maximum
|
||||||
max_i = None
|
max_i = None # index of current maximum
|
||||||
for peak in peak_indexes:
|
for peak in peak_indexes:
|
||||||
if not max_y or y[peak] > max_y:
|
# if current peak is larger than old maximum and its
|
||||||
|
# second derivative is positive, replace maximum with
|
||||||
|
# current peak
|
||||||
|
if (not max_y or y[peak] > max_y) and y[peak] > 0:
|
||||||
max_y = y[peak]
|
max_y = y[peak]
|
||||||
max_i = peak
|
max_i = peak
|
||||||
|
|
||||||
if y[max_i] > 0:
|
# If a global maximum is identified, return use its x value as
|
||||||
# if value of second derivative is positive, choose identified
|
# melting temperature
|
||||||
# position as peak candidate
|
if max_y and max_i:
|
||||||
tm = x[max_i]
|
tm = x[max_i]
|
||||||
|
# if no maximum is found, return NaN
|
||||||
else:
|
else:
|
||||||
return np.NaN # else discard
|
return np.NaN
|
||||||
|
|
||||||
except:
|
except:
|
||||||
return np.NaN # In case of error, return no peak
|
return np.NaN # In case of error, return no peak
|
||||||
|
|
||||||
|
@ -175,19 +212,29 @@ class Well:
|
||||||
return denatured
|
return denatured
|
||||||
|
|
||||||
def analyze(self):
|
def analyze(self):
|
||||||
|
"""
|
||||||
|
Analyse data of the well. Takes care of the calculation of derivatives,
|
||||||
|
fitting of splines to derivatives and calculation of melting point.
|
||||||
|
"""
|
||||||
|
# apply signal filter to raw data to filter out some noise
|
||||||
self.filter_raw()
|
self.filter_raw()
|
||||||
|
# fit a spline to unfiltered and filtered raw data
|
||||||
self.splines["raw"] = self.calc_spline(self.raw)
|
self.splines["raw"] = self.calc_spline(self.raw)
|
||||||
self.splines["filtered"] = self.calc_spline(self.filtered)
|
self.splines["filtered"] = self.calc_spline(self.filtered)
|
||||||
|
# calculate derivatives of filtered data
|
||||||
self.calc_derivatives()
|
self.calc_derivatives()
|
||||||
|
# if baseline correction is requested, calculate baseline
|
||||||
if self.baseline_correction:
|
if self.baseline_correction:
|
||||||
self.baseline = self.calc_baseline(self.derivatives[1])
|
self.baseline = self.calc_baseline(self.derivatives[1])
|
||||||
|
# do an initial check if data suggest denaturation
|
||||||
if self.is_denatured():
|
if self.is_denatured():
|
||||||
|
# if appropriate, append well to denatured wells of the plate
|
||||||
self.owner.denatured_wells.append(self)
|
self.owner.denatured_wells.append(self)
|
||||||
|
# fit a spline to the first derivative
|
||||||
self.splines["derivative1"] = self.calc_spline(self.derivatives[1])
|
self.splines["derivative1"] = self.calc_spline(self.derivatives[1])
|
||||||
|
# calculate and set melting point
|
||||||
self.tm = self.calc_tm()
|
self.tm = self.calc_tm()
|
||||||
|
# fallback: set melting point to NaN
|
||||||
if self.tm is None:
|
if self.tm is None:
|
||||||
self.tm = np.NaN
|
self.tm = np.NaN
|
||||||
|
|
||||||
|
@ -216,6 +263,7 @@ class Experiment:
|
||||||
self.signal_threshold = signal_threshold
|
self.signal_threshold = signal_threshold
|
||||||
self.avg_plate = None
|
self.avg_plate = None
|
||||||
self.baseline_correction = baseline_correction
|
self.baseline_correction = baseline_correction
|
||||||
|
# use cuttoff if provided, otherwise cut at edges
|
||||||
if cutoff_low:
|
if cutoff_low:
|
||||||
self.tm_cutoff_low = cutoff_low
|
self.tm_cutoff_low = cutoff_low
|
||||||
else:
|
else:
|
||||||
|
@ -224,13 +272,16 @@ class Experiment:
|
||||||
self.tm_cutoff_high = cutoff_high
|
self.tm_cutoff_high = cutoff_high
|
||||||
else:
|
else:
|
||||||
self.tm_cutoff_high = self.t2
|
self.tm_cutoff_high = self.t2
|
||||||
|
# use a specified color range, if provided, otherwise set to None
|
||||||
if color_range:
|
if color_range:
|
||||||
self.color_range = color_range
|
self.color_range = color_range
|
||||||
else:
|
else:
|
||||||
self.color_range = None
|
self.color_range = None
|
||||||
|
# Initialize self.plates as empty list. New plates will be added to
|
||||||
|
# this list
|
||||||
self.plates = []
|
self.plates = []
|
||||||
|
|
||||||
|
# populate self.plates with data in provided files list
|
||||||
i = 1
|
i = 1
|
||||||
for file in files:
|
for file in files:
|
||||||
plate = Plate(type=self.type, owner=self, filename=file,
|
plate = Plate(type=self.type, owner=self, filename=file,
|
||||||
|
@ -242,6 +293,8 @@ class Experiment:
|
||||||
plate.id = i
|
plate.id = i
|
||||||
self.plates.append(plate)
|
self.plates.append(plate)
|
||||||
i += 1
|
i += 1
|
||||||
|
# if more than one file is provied, assume that those are replicates
|
||||||
|
# and add a special plate representing the average results
|
||||||
if len(files) > 1:
|
if len(files) > 1:
|
||||||
self.avg_plate = Plate(type=self.type, owner=self, filename=None,
|
self.avg_plate = Plate(type=self.type, owner=self, filename=None,
|
||||||
t1=self.t1, t2=self.t2, dt=self.dt,
|
t1=self.t1, t2=self.t2, dt=self.dt,
|
||||||
|
@ -253,22 +306,32 @@ class Experiment:
|
||||||
self.avg_plate.id = 'average'
|
self.avg_plate.id = 'average'
|
||||||
|
|
||||||
def analyze(self):
|
def analyze(self):
|
||||||
|
"""
|
||||||
|
Triggers analyzation of plates.
|
||||||
|
"""
|
||||||
for plate in self.plates:
|
for plate in self.plates:
|
||||||
plate.analyze(gui=self.gui)
|
plate.analyze(gui=self.gui)
|
||||||
|
# if more than one plate is present, calculate average values for the
|
||||||
|
# merged average plate
|
||||||
if len(self.plates) > 1:
|
if len(self.plates) > 1:
|
||||||
|
# iterate over all wells in a plate
|
||||||
for i in range(self.wellnum):
|
for i in range(self.wellnum):
|
||||||
tmp = []
|
tmp = []
|
||||||
|
# iterate over all plates
|
||||||
for plate in self.plates:
|
for plate in self.plates:
|
||||||
tm = plate.wells[i].tm
|
tm = plate.wells[i].tm
|
||||||
self.avg_plate.wells[i].name = plate.wells[i].name
|
self.avg_plate.wells[i].name = plate.wells[i].name
|
||||||
if plate.wells[i] not in plate.denatured_wells:
|
if plate.wells[i] not in plate.denatured_wells:
|
||||||
|
# if well is not denatured, add to collection of tm
|
||||||
|
# values
|
||||||
tmp.append(tm)
|
tmp.append(tm)
|
||||||
if len(tmp) > 0:
|
if len(tmp) > 0:
|
||||||
|
# if at least one tm is added, calculate average
|
||||||
|
# and standard deviation
|
||||||
self.avg_plate.wells[i].tm = np.mean(tmp)
|
self.avg_plate.wells[i].tm = np.mean(tmp)
|
||||||
self.avg_plate.wells[i].tm_sd = np.std(tmp)
|
self.avg_plate.wells[i].tm_sd = np.std(tmp)
|
||||||
else:
|
else:
|
||||||
|
# otherwise add to denatured wells
|
||||||
append_well = self.avg_plate.wells[i]
|
append_well = self.avg_plate.wells[i]
|
||||||
self.avg_plate.denatured_wells.append(append_well)
|
self.avg_plate.denatured_wells.append(append_well)
|
||||||
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue