mirror of
https://github.com/Athemis/PyDSF.git
synced 2025-04-05 14:46:03 +00:00
Adding comments; Proper error handling
This commit is contained in:
parent
a5eb072d4a
commit
a28142fa1e
1 changed files with 89 additions and 26 deletions
115
pydsf.py
115
pydsf.py
|
@ -1,7 +1,11 @@
|
|||
#! /usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Import csv library; Part of python standard libs
|
||||
import csv
|
||||
|
||||
# Import 3rd party packages. Check if installed and die with error message
|
||||
# if not.
|
||||
try:
|
||||
import matplotlib as mpl
|
||||
import mpl_toolkits.axes_grid1
|
||||
|
@ -30,10 +34,13 @@ except ImportError:
|
|||
|
||||
|
||||
class Well:
|
||||
|
||||
def __init__(self, owner):
|
||||
"""
|
||||
Represents a well in a microtiter plate.
|
||||
Owned by an object of type 'Plate'.
|
||||
"""
|
||||
def __init__(self, owner, name=None):
|
||||
self.owner = owner
|
||||
self.name = None
|
||||
self.name = name
|
||||
self.raw = np.zeros(self.owner.reads, dtype=np.float)
|
||||
self.filtered = np.zeros(self.owner.reads, dtype=np.float)
|
||||
self.derivatives = np.zeros((4, self.owner.reads))
|
||||
|
@ -49,25 +56,42 @@ class Well:
|
|||
"""
|
||||
Apply a filter to the raw data
|
||||
"""
|
||||
b, a = butter(3, 0.3)
|
||||
self.filtered = filtfilt(b, a, self.raw)
|
||||
try:
|
||||
b, a = butter(3, 0.3)
|
||||
self.filtered = filtfilt(b, a, self.raw)
|
||||
except Exception as err:
|
||||
print('Filtering of raw data failed!', err)
|
||||
|
||||
def calc_spline(self, y):
|
||||
"""
|
||||
Calculate a spline that represents the smoothed data points
|
||||
"""
|
||||
t_range = self.owner.temprange
|
||||
spline = interpolate.InterpolatedUnivariateSpline(t_range, y)
|
||||
return spline
|
||||
try:
|
||||
t_range = self.owner.temprange
|
||||
spline = interpolate.InterpolatedUnivariateSpline(t_range, y)
|
||||
return spline
|
||||
except Exception as err:
|
||||
print('Calculation of spline failed! ', err)
|
||||
|
||||
def calc_derivatives(self, spline='filtered'):
|
||||
for t in self.owner.temprange:
|
||||
temp = self.splines[spline].derivatives(t)
|
||||
for i in range(4):
|
||||
self.derivatives[i, t - self.owner.t1] = temp[i]
|
||||
"""
|
||||
Calculates derivatives of a function, representing the raw data.
|
||||
Defaults to using the filtered raw data.
|
||||
"""
|
||||
try:
|
||||
# iterate over temperature range (x values)
|
||||
for t in self.owner.temprange:
|
||||
temp = self.splines[spline].derivatives(t)
|
||||
for i in range(4):
|
||||
self.derivatives[i, t - self.owner.t1] = temp[i]
|
||||
except Exception as err:
|
||||
print('Calculation of derivatives failed!', err)
|
||||
|
||||
@staticmethod
|
||||
def calc_baseline(y):
|
||||
"""
|
||||
Calculate baseline of the well. Used for peak identification.
|
||||
"""
|
||||
try:
|
||||
baseline = peakutils.baseline(y)
|
||||
return baseline
|
||||
|
@ -85,36 +109,49 @@ class Well:
|
|||
# First assume that the well is denatured
|
||||
self.owner.denatured_wells.append(self)
|
||||
|
||||
# If a temperatur cutoff has been set and the minimum/maximum
|
||||
# temperature values of the provided data is not within that range,
|
||||
# cut data accordingly.
|
||||
if (self.owner.tm_cutoff_low != self.owner.t1 or
|
||||
self.owner.tm_cutoff_high != self.owner.t1):
|
||||
x = np.arange(self.owner.tm_cutoff_low,
|
||||
self.owner.tm_cutoff_high + 1,
|
||||
self.owner.dt,
|
||||
dtype=np.dtype(np.float))
|
||||
# Otherwise use the whole temperature range of the data
|
||||
else:
|
||||
x = self.owner.temprange
|
||||
|
||||
x = self.owner.temprange
|
||||
# Use second derivative as y
|
||||
y = self.derivatives[1]
|
||||
|
||||
# Substract baseline from y
|
||||
if self.baseline_correction:
|
||||
y = y - self.baseline
|
||||
|
||||
# Run peak finding; return NaN in case of error
|
||||
try:
|
||||
peak_indexes = peakutils.indexes(y, thres=0.3)
|
||||
|
||||
# loop over results to find maximum value for peak candidates
|
||||
max_y = None
|
||||
max_i = None
|
||||
max_y = None # current maximum
|
||||
max_i = None # index of current maximum
|
||||
for peak in peak_indexes:
|
||||
if not max_y or y[peak] > max_y:
|
||||
# if current peak is larger than old maximum and its
|
||||
# second derivative is positive, replace maximum with
|
||||
# current peak
|
||||
if (not max_y or y[peak] > max_y) and y[peak] > 0:
|
||||
max_y = y[peak]
|
||||
max_i = peak
|
||||
|
||||
if y[max_i] > 0:
|
||||
# if value of second derivative is positive, choose identified
|
||||
# position as peak candidate
|
||||
# If a global maximum is identified, return use its x value as
|
||||
# melting temperature
|
||||
if max_y and max_i:
|
||||
tm = x[max_i]
|
||||
# if no maximum is found, return NaN
|
||||
else:
|
||||
return np.NaN # else discard
|
||||
return np.NaN
|
||||
|
||||
except:
|
||||
return np.NaN # In case of error, return no peak
|
||||
|
||||
|
@ -175,19 +212,29 @@ class Well:
|
|||
return denatured
|
||||
|
||||
def analyze(self):
|
||||
"""
|
||||
Analyse data of the well. Takes care of the calculation of derivatives,
|
||||
fitting of splines to derivatives and calculation of melting point.
|
||||
"""
|
||||
# apply signal filter to raw data to filter out some noise
|
||||
self.filter_raw()
|
||||
# fit a spline to unfiltered and filtered raw data
|
||||
self.splines["raw"] = self.calc_spline(self.raw)
|
||||
self.splines["filtered"] = self.calc_spline(self.filtered)
|
||||
|
||||
# calculate derivatives of filtered data
|
||||
self.calc_derivatives()
|
||||
# if baseline correction is requested, calculate baseline
|
||||
if self.baseline_correction:
|
||||
self.baseline = self.calc_baseline(self.derivatives[1])
|
||||
# do an initial check if data suggest denaturation
|
||||
if self.is_denatured():
|
||||
# if appropriate, append well to denatured wells of the plate
|
||||
self.owner.denatured_wells.append(self)
|
||||
|
||||
# fit a spline to the first derivative
|
||||
self.splines["derivative1"] = self.calc_spline(self.derivatives[1])
|
||||
|
||||
# calculate and set melting point
|
||||
self.tm = self.calc_tm()
|
||||
# fallback: set melting point to NaN
|
||||
if self.tm is None:
|
||||
self.tm = np.NaN
|
||||
|
||||
|
@ -216,6 +263,7 @@ class Experiment:
|
|||
self.signal_threshold = signal_threshold
|
||||
self.avg_plate = None
|
||||
self.baseline_correction = baseline_correction
|
||||
# use cuttoff if provided, otherwise cut at edges
|
||||
if cutoff_low:
|
||||
self.tm_cutoff_low = cutoff_low
|
||||
else:
|
||||
|
@ -224,13 +272,16 @@ class Experiment:
|
|||
self.tm_cutoff_high = cutoff_high
|
||||
else:
|
||||
self.tm_cutoff_high = self.t2
|
||||
# use a specified color range, if provided, otherwise set to None
|
||||
if color_range:
|
||||
self.color_range = color_range
|
||||
else:
|
||||
self.color_range = None
|
||||
|
||||
# Initialize self.plates as empty list. New plates will be added to
|
||||
# this list
|
||||
self.plates = []
|
||||
|
||||
# populate self.plates with data in provided files list
|
||||
i = 1
|
||||
for file in files:
|
||||
plate = Plate(type=self.type, owner=self, filename=file,
|
||||
|
@ -242,6 +293,8 @@ class Experiment:
|
|||
plate.id = i
|
||||
self.plates.append(plate)
|
||||
i += 1
|
||||
# if more than one file is provied, assume that those are replicates
|
||||
# and add a special plate representing the average results
|
||||
if len(files) > 1:
|
||||
self.avg_plate = Plate(type=self.type, owner=self, filename=None,
|
||||
t1=self.t1, t2=self.t2, dt=self.dt,
|
||||
|
@ -253,22 +306,32 @@ class Experiment:
|
|||
self.avg_plate.id = 'average'
|
||||
|
||||
def analyze(self):
|
||||
"""
|
||||
Triggers analyzation of plates.
|
||||
"""
|
||||
for plate in self.plates:
|
||||
plate.analyze(gui=self.gui)
|
||||
|
||||
# if more than one plate is present, calculate average values for the
|
||||
# merged average plate
|
||||
if len(self.plates) > 1:
|
||||
|
||||
# iterate over all wells in a plate
|
||||
for i in range(self.wellnum):
|
||||
tmp = []
|
||||
# iterate over all plates
|
||||
for plate in self.plates:
|
||||
tm = plate.wells[i].tm
|
||||
self.avg_plate.wells[i].name = plate.wells[i].name
|
||||
if plate.wells[i] not in plate.denatured_wells:
|
||||
# if well is not denatured, add to collection of tm
|
||||
# values
|
||||
tmp.append(tm)
|
||||
if len(tmp) > 0:
|
||||
# if at least one tm is added, calculate average
|
||||
# and standard deviation
|
||||
self.avg_plate.wells[i].tm = np.mean(tmp)
|
||||
self.avg_plate.wells[i].tm_sd = np.std(tmp)
|
||||
else:
|
||||
# otherwise add to denatured wells
|
||||
append_well = self.avg_plate.wells[i]
|
||||
self.avg_plate.denatured_wells.append(append_well)
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue