1
0
Fork 0
mirror of https://github.com/Athemis/PyDSF.git synced 2025-04-05 14:46:03 +00:00

Clean-up; PEP8-compliance

This commit is contained in:
Alexander Minges 2015-07-06 16:00:12 +02:00
parent fef87a6657
commit a5eb072d4a

324
pydsf.py
View file

@ -1,18 +1,14 @@
#! /usr/bin/env python2 #! /usr/bin/env python
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import csv import csv
import random
try: try:
import matplotlib as mpl import matplotlib as mpl
#import mpl_toolkits.axes_grid
import mpl_toolkits.axes_grid1 import mpl_toolkits.axes_grid1
mpl.use('Qt5Agg') mpl.use('Qt5Agg')
mpl.interactive(True) mpl.interactive(True)
import matplotlib.ticker as ticker import matplotlib.ticker as ticker
import matplotlib.patches as mpatches
import matplotlib.gridspec as gridspec
except ImportError: except ImportError:
raise ImportError('----- Matplotlib must be installed. -----') raise ImportError('----- Matplotlib must be installed. -----')
@ -27,13 +23,14 @@ except ImportError:
raise ImportError('----- NumPy must be installed. -----') raise ImportError('----- NumPy must be installed. -----')
try: try:
from scipy.signal import filtfilt, butter, find_peaks_cwt from scipy.signal import filtfilt, butter
from scipy import interpolate from scipy import interpolate
except ImportError: except ImportError:
raise ImportError('----- SciPy must be installed. -----') raise ImportError('----- SciPy must be installed. -----')
class Well: class Well:
def __init__(self, owner): def __init__(self, owner):
self.owner = owner self.owner = owner
self.name = None self.name = None
@ -59,7 +56,8 @@ class Well:
""" """
Calculate a spline that represents the smoothed data points Calculate a spline that represents the smoothed data points
""" """
spline = interpolate.InterpolatedUnivariateSpline(self.owner.temprange, y) t_range = self.owner.temprange
spline = interpolate.InterpolatedUnivariateSpline(t_range, y)
return spline return spline
def calc_derivatives(self, spline='filtered'): def calc_derivatives(self, spline='filtered'):
@ -87,8 +85,12 @@ class Well:
# First assume that the well is denatured # First assume that the well is denatured
self.owner.denatured_wells.append(self) self.owner.denatured_wells.append(self)
if self.owner.tm_cutoff_low != self.owner.t1 or self.owner.tm_cutoff_high != self.owner.t1: if (self.owner.tm_cutoff_low != self.owner.t1 or
x = np.arange(self.owner.tm_cutoff_low, self.owner.tm_cutoff_high + 1, self.owner.dt, dtype=np.dtype(np.float)) self.owner.tm_cutoff_high != self.owner.t1):
x = np.arange(self.owner.tm_cutoff_low,
self.owner.tm_cutoff_high + 1,
self.owner.dt,
dtype=np.dtype(np.float))
x = self.owner.temprange x = self.owner.temprange
y = self.derivatives[1] y = self.derivatives[1]
@ -107,17 +109,22 @@ class Well:
max_y = y[peak] max_y = y[peak]
max_i = peak max_i = peak
if y[max_i] > 0: # if value of second derivative is positive, choose identified position as peak candidate if y[max_i] > 0:
# if value of second derivative is positive, choose identified
# position as peak candidate
tm = x[max_i] tm = x[max_i]
else: else:
return np.NaN # else discard return np.NaN # else discard
except: except:
return np.NaN # In case of error, return no peak return np.NaN # In case of error, return no peak
try: try:
if tm and tm >= self.owner.tm_cutoff_low and tm <= self.owner.tm_cutoff_high: if (tm and tm >= self.owner.tm_cutoff_low and
tm = round(peakutils.interpolate(x, y, width=3, ind=[max_i])[0], 2) tm <= self.owner.tm_cutoff_high):
self.owner.denatured_wells.remove(self) # If everything is fine, remove the denatured flag tm = round(peakutils.interpolate(x, y, width=3,
ind=[max_i])[0], 2)
self.owner.denatured_wells.remove(self)
# If everything is fine, remove the denatured flag
return tm # and return the Tm return tm # and return the Tm
else: else:
return np.NaN # otherwise, return NaN return np.NaN # otherwise, return NaN
@ -126,33 +133,41 @@ class Well:
def is_denatured(self): def is_denatured(self):
""" """
Check if the well is denatured. Returns true if the well has been already flagged as Check if the well is denatured. Returns true if the well has been
denatured, no Tm was found, or if the initial signal intensity is above a user definded already flagged as denatured, no Tm was found, or if the initial
threshold. signal intensity is above a user definded threshold.
""" """
denatured = True # Assumption is that the well is denatured denatured = True # Assumption is that the well is denatured
if self in self.owner.denatured_wells: # check if the well is already flagged as denatured if self in self.owner.denatured_wells:
# check if the well is already flagged as denatured
return denatured # return true if it is return denatured # return true if it is
if self.tm and (self.tm <= self.owner.tm_cutoff_low or self.tm >= self.owner.tm_cutoff_high): if self.tm and (self.tm <= self.owner.tm_cutoff_low or
self.tm >= self.owner.tm_cutoff_high):
denatured = True denatured = True
return denatured return denatured
for i in self.derivatives[1]: # Iterate over all points in the first derivative for i in self.derivatives[1]:
# Iterate over all points in the first derivative
if i > 0: # If a positive slope is found if i > 0: # If a positive slope is found
denatured = False # set denatured flag to False denatured = False # set denatured flag to False
reads = int(round(self.owner.reads / 10)) # How many values should be checked against the signal threshold: reads = int(round(self.owner.reads / 10))
# How many values should be checked against the signal threshold:
# 1/10 of the total number of data point # 1/10 of the total number of data point
read = 0 # Initialize running variable representing the current data point read = 0
# Initialize running variable representing the current data point
if not denatured: if not denatured:
for j in self.filtered: # Iterate over the filtered data for j in self.filtered: # Iterate over the filtered data
if self.owner.signal_threshold: # If a signal threshold was defined if self.owner.signal_threshold:
if j > self.owner.signal_threshold and read <= reads: # iterate over 1/10 of all data points # If a signal threshold was defined
if j > self.owner.signal_threshold and read <= reads:
# iterate over 1/10 of all data points
# and check for values larger than the threshold. # and check for values larger than the threshold.
denatured = True # Set flag to True if a match is found denatured = True
# Set flag to True if a match is found
print("{}: {}".format(self.name, j)) print("{}: {}".format(self.name, j))
return denatured # and return return denatured # and return
read += 1 read += 1
@ -178,8 +193,10 @@ class Well:
class Experiment: class Experiment:
def __init__(self, type, gui=None, files=None, replicates=None, t1=25, t2=95, dt=1, cols=12, rows=8, def __init__(self, type, gui=None, files=None, replicates=None, t1=25,
cutoff_low=None, cutoff_high=None, signal_threshold=None, color_range=None, baseline_correction=False): t2=95, dt=1, cols=12, rows=8, cutoff_low=None,
cutoff_high=None, signal_threshold=None, color_range=None,
baseline_correction=False):
self.replicates = replicates self.replicates = replicates
self.cols = cols self.cols = cols
self.rows = rows self.rows = rows
@ -216,16 +233,22 @@ class Experiment:
i = 1 i = 1
for file in files: for file in files:
plate = Plate(type=self.type, owner=self, filename=file, t1=self.t1, t2=self.t2, dt=self.dt, cols=self.cols, plate = Plate(type=self.type, owner=self, filename=file,
rows=self.rows, cutoff_low=self.tm_cutoff_low, cutoff_high=self.tm_cutoff_high, t1=self.t1, t2=self.t2, dt=self.dt, cols=self.cols,
signal_threshold=self.signal_threshold, color_range=self.color_range) rows=self.rows, cutoff_low=self.tm_cutoff_low,
cutoff_high=self.tm_cutoff_high,
signal_threshold=self.signal_threshold,
color_range=self.color_range)
plate.id = i plate.id = i
self.plates.append(plate) self.plates.append(plate)
i += 1 i += 1
if len(files) > 1: if len(files) > 1:
self.avg_plate = Plate(type=self.type, owner=self, filename=None, t1=self.t1, t2=self.t2, dt=self.dt, self.avg_plate = Plate(type=self.type, owner=self, filename=None,
cols=self.cols, rows=self.rows, cutoff_low=self.tm_cutoff_low, t1=self.t1, t2=self.t2, dt=self.dt,
cutoff_high=self.tm_cutoff_high, signal_threshold=self.signal_threshold, cols=self.cols, rows=self.rows,
cutoff_low=self.tm_cutoff_low,
cutoff_high=self.tm_cutoff_high,
signal_threshold=self.signal_threshold,
color_range=self.color_range) color_range=self.color_range)
self.avg_plate.id = 'average' self.avg_plate.id = 'average'
@ -235,10 +258,6 @@ class Experiment:
if len(self.plates) > 1: if len(self.plates) > 1:
# self.tm_replicates = np.zeros( self.wellnum, dtype=float )
# self.tm_replicates_sd = np.zeros( self.wellnum, dtype=float )
for i in range(self.wellnum): for i in range(self.wellnum):
tmp = [] tmp = []
for plate in self.plates: for plate in self.plates:
@ -247,17 +266,17 @@ class Experiment:
if plate.wells[i] not in plate.denatured_wells: if plate.wells[i] not in plate.denatured_wells:
tmp.append(tm) tmp.append(tm)
if len(tmp) > 0: if len(tmp) > 0:
# self.avg_plate.wells[i].tm = (sum(tmp)/len(tmp))
self.avg_plate.wells[i].tm = np.mean(tmp) self.avg_plate.wells[i].tm = np.mean(tmp)
self.avg_plate.wells[i].tm_sd = np.std(tmp) self.avg_plate.wells[i].tm_sd = np.std(tmp)
# self.tm_replicates[i] = (sum(tmp)/len(tmp))
else: else:
self.avg_plate.denatured_wells.append(self.avg_plate.wells[i]) append_well = self.avg_plate.wells[i]
self.avg_plate.denatured_wells.append(append_well)
class Plate: class Plate:
def __init__(self, type, owner, id=None, filename=None, replicates=None, t1=None, t2=None, dt=None, cols=12, rows=8, def __init__(self, type, owner, id=None, filename=None, replicates=None,
cutoff_low=None, cutoff_high=None, signal_threshold=None, color_range=None): t1=None, t2=None, dt=None, cols=12, rows=8, cutoff_low=None,
cutoff_high=None, signal_threshold=None, color_range=None):
self.cols = cols self.cols = cols
self.rows = rows self.rows = rows
self.owner = owner self.owner = owner
@ -305,7 +324,6 @@ class Plate:
well = Well(owner=self) well = Well(owner=self)
self.wells.append(well) self.wells.append(well)
def analytikJena(self): def analytikJena(self):
""" """
Data processing for Analytik Jena qTower 2.0 export files Data processing for Analytik Jena qTower 2.0 export files
@ -331,6 +349,7 @@ class Plate:
try: try:
# Try to access data file in the given path # Try to access data file in the given path
with open(self.filename) as f: with open(self.filename) as f:
f.close()
pass pass
except IOError as e: except IOError as e:
# If the file is not found, or not accessible: abort # If the file is not found, or not accessible: abort
@ -371,12 +390,18 @@ class Plate:
def write_avg_tm_table(self, filename): def write_avg_tm_table(self, filename):
with open(filename, 'w') as f: with open(filename, 'w') as f:
f.write('#{:<4s}{:>13s}{:>13s}\n'.format('"ID"', '"Tm [°C]"', '"SD"')) f.write('#{:<4s}{:>13s}{:>13s}\n'.format('"ID"',
'"Tm [°C]"',
'"SD"'))
for well in self.wells: for well in self.wells:
if np.isnan(well.tm) or well in self.denatured_wells: if np.isnan(well.tm) or well in self.denatured_wells:
f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name, 'NaN', 'NaN')) f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name,
'NaN',
'NaN'))
else: else:
f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name, str(well.tm), str(well.tm_sd))) f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name,
str(well.tm),
str(well.tm_sd)))
def write_raw_table(self, filename): def write_raw_table(self, filename):
with open(filename, 'w') as f: with open(filename, 'w') as f:
@ -391,7 +416,8 @@ class Plate:
f.write('{:<10s}'.format(str(t))) f.write('{:<10s}'.format(str(t)))
for well in self.wells: for well in self.wells:
d = well.raw[i] d = well.raw[i]
f.write('{:>-15.3f}'.format(float(np.round(d, decimals=3)))) d_rounded = float(np.round(d, decimals=3))
f.write('{:>-15.3f}'.format(d_rounded))
f.write('\n') f.write('\n')
i += 1 i += 1
@ -408,7 +434,8 @@ class Plate:
f.write('{:<10s}'.format(str(t))) f.write('{:<10s}'.format(str(t)))
for well in self.wells: for well in self.wells:
d = well.filtered[i] d = well.filtered[i]
f.write('{:>-15.3f}'.format(float(np.round(d, decimals=3)))) d_rounded = float(np.round(d, decimals=3))
f.write('{:>-15.3f}'.format(d_rounded))
f.write('\n') f.write('\n')
i += 1 i += 1
@ -425,7 +452,8 @@ class Plate:
f.write('{:<10s}'.format(str(t))) f.write('{:<10s}'.format(str(t)))
for well in self.wells: for well in self.wells:
d = well.derivatives[1][i] d = well.derivatives[1][i]
f.write('{:>-15.3f}'.format(float(np.round(d, decimals=3)))) d_rounded = float(np.round(d, decimals=3))
f.write('{:>-15.3f}'.format(d_rounded))
f.write('\n') f.write('\n')
i += 1 i += 1
@ -438,6 +466,7 @@ class Plate:
def update_progress_bar(bar, value): def update_progress_bar(bar, value):
bar.setValue(value) bar.setValue(value)
class PlotResults(): class PlotResults():
def plot_tm_heatmap_single(self, plate, widget): def plot_tm_heatmap_single(self, plate, widget):
@ -451,18 +480,23 @@ class PlotResults():
c_values = [] # Array holding the color values aka Tm c_values = [] # Array holding the color values aka Tm
dx_values = [] dx_values = []
dy_values = [] dy_values = []
dc_values = []
canvas = widget.canvas canvas = widget.canvas
canvas.clear() canvas.clear()
for well in plate.wells: # Iterate over all wells for well in plate.wells: # Iterate over all wells
if well not in plate.denatured_wells: # Check if well is denatured (no Tm found) if well not in plate.denatured_wells:
# Check if well is denatured (no Tm found)
c = well.tm # If not, set color to Tm c = well.tm # If not, set color to Tm
if c < plate.tm_cutoff_low: # Check if Tm is lower that the cutoff if c < plate.tm_cutoff_low:
c = plate.tm_cutoff_low # If it is, set color to cutoff # Check if Tm is lower that the cutoff
elif c > plate.tm_cutoff_high: # Check if Tm is higher that the cutoff c = plate.tm_cutoff_low
c = plate.tm_cutoff_high # If it is, set color to cutoff # If it is, set color to cutoff
elif c > plate.tm_cutoff_high:
# Check if Tm is higher that the cutoff
c = plate.tm_cutoff_high
# If it is, set color to cutoff
else: # If the plate is denatured else: # If the plate is denatured
c = plate.tm_cutoff_low # Set its color to the low cutoff c = plate.tm_cutoff_low
# Set its color to the low cutoff
dx_values.append(x) dx_values.append(x)
dy_values.append(y) dy_values.append(y)
x_values.append(x) # Add values to the respective arrays x_values.append(x) # Add values to the respective arrays
@ -476,15 +510,22 @@ class PlotResults():
fig1 = canvas.fig # new figure fig1 = canvas.fig # new figure
ax1 = fig1.add_subplot(1, 1, 1) # A single canvas ax1 = fig1.add_subplot(1, 1, 1) # A single canvas
ax1.autoscale(tight=True) # Scale plate size ax1.autoscale(tight=True) # Scale plate size
ax1.xaxis.set_major_locator(ticker.MaxNLocator(plate.cols + 1)) # n columns ax1.xaxis.set_major_locator(ticker.MaxNLocator(plate.cols + 1))
ax1.yaxis.set_major_locator(ticker.MaxNLocator(plate.rows + 1)) # n rows # n columns
ax1.yaxis.set_major_locator(ticker.MaxNLocator(plate.rows + 1))
# n rows
if plate.color_range: if plate.color_range:
cax = ax1.scatter(x_values, y_values, s=305, c=c_values, marker='s', vmin=plate.color_range[0], # plot wells and color using the colormap
vmax=plate.color_range[1]) # plot wells and color using the colormap cax = ax1.scatter(x_values, y_values, s=305, c=c_values,
marker='s', vmin=plate.color_range[0],
vmax=plate.color_range[1])
else: else:
cax = ax1.scatter(x_values, y_values, s=305, c=c_values, marker='s') # plot wells and color using the colormap # plot wells and color using the colormap
cax = ax1.scatter(x_values, y_values, s=305, c=c_values,
marker='s')
cax2 = ax1.scatter(dx_values, dy_values, s=80, c='white', marker='x', linewidths=(1.5,)) ax1.scatter(dx_values, dy_values, s=80, c='white', marker='x',
linewidths=(1.5,))
ax1.invert_yaxis() # invert y axis to math plate layout ax1.invert_yaxis() # invert y axis to math plate layout
cbar = fig1.colorbar(cax) # show colorbar cbar = fig1.colorbar(cax) # show colorbar
ax1.set_xlabel('Columns') # set axis and colorbar label ax1.set_xlabel('Columns') # set axis and colorbar label
@ -506,45 +547,57 @@ class PlotResults():
canvas = widget.canvas canvas = widget.canvas
canvas.clear() canvas.clear()
fig2 = canvas.fig # new figure fig2 = canvas.fig # new figure
fig2.suptitle('Individual Derivatives (plate #{})'.format(str(plate.id))) # set title # set title
fig2.suptitle(
'Individual Derivatives (plate #{})'.format(str(plate.id)))
for plot_num in range(1, plate.wellnum + 1): # iterate over all wells for plot_num in range(1, plate.wellnum + 1): # iterate over all wells
well = plate.wells[plot_num - 1] # get single well based on current plot number well = plate.wells[plot_num - 1]
ax = fig2.add_subplot(plate.rows, plate.cols, plot_num) # add new subplot # get single well based on current plot number
ax = fig2.add_subplot(plate.rows, plate.cols, plot_num)
# add new subplot
ax.autoscale(tight=True) # scale to data ax.autoscale(tight=True) # scale to data
ax.set_title(well.name, size='xx-small') # set title of current subplot to well identifier ax.set_title(well.name, size='xx-small')
# set title of current subplot to well identifier
if well in plate.denatured_wells: if well in plate.denatured_wells:
ax.patch.set_facecolor('#FFD6D6') ax.patch.set_facecolor('#FFD6D6')
# add axis label to the subplot in the bottom left corner of the
if plot_num == plate.wellnum - plate.cols + 1: # add axis label to the subplot in the bottom left corner of the figure # figure
if plot_num == plate.wellnum - plate.cols + 1:
ax.set_xlabel(u'T [°C]', size='xx-small') ax.set_xlabel(u'T [°C]', size='xx-small')
ax.set_ylabel('dI/dT', size='xx-small') ax.set_ylabel('dI/dT', size='xx-small')
x = plate.temprange # set values for the x axis to the given temperature range # set values for the x axis to the given temperature range
x = plate.temprange
if well.baseline_correction: if well.baseline_correction:
print(well.baseline) print(well.baseline)
y = well.derivatives[1] - well.baseline y = well.derivatives[1] - well.baseline
else: else:
y = well.derivatives[1] # grab y values from the first derivative of the well # grab y values from the first derivative of the well
y = well.derivatives[1]
ax.xaxis.set_major_locator(ticker.MaxNLocator(4)) # only show three tickmarks on both axes # only show three tickmarks on both axes
ax.xaxis.set_major_locator(ticker.MaxNLocator(4))
ax.yaxis.set_major_locator(ticker.MaxNLocator(4)) ax.yaxis.set_major_locator(ticker.MaxNLocator(4))
if well not in plate.denatured_wells: # check if well is denatured (without determined Tm) # check if well is denatured (without determined Tm)
if well not in plate.denatured_wells:
tm = well.tm # if not, grab its Tm tm = well.tm # if not, grab its Tm
else: else:
tm = np.NaN # else set Tm to np.NaN tm = np.NaN # else set Tm to np.NaN
if tm: if tm:
ax.axvline(x=tm) # plot vertical line at the Tm ax.axvline(x=tm) # plot vertical line at the Tm
ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8', alpha=0.5) # shade lower cutoff area ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8',
ax.axvspan(plate.tm_cutoff_high, plate.t2, facecolor='0.8', alpha=0.5) # shade higher cutoff area alpha=0.5) # shade lower cutoff area
for label in ax.get_xticklabels() + ax.get_yticklabels(): # set fontsize for all tick labels to xx-small ax.axvspan(plate.tm_cutoff_high, plate.t2, facecolor='0.8',
alpha=0.5) # shade higher cutoff area
# set fontsize for all tick labels to xx-small
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontsize('xx-small') label.set_fontsize('xx-small')
cax = ax.plot(x, y) # plot data to the current subplot ax.plot(x, y) # plot data to the current subplot
canvas.draw() canvas.draw()
def plot_raw(self, plate, widget): def plot_raw(self, plate, widget):
""" """
Plot raw data (Fig. 3) Plot raw data (Fig. 3)
@ -558,108 +611,35 @@ class PlotResults():
fig = canvas.fig fig = canvas.fig
fig.suptitle('Raw Data (plate #{})'.format(str(plate.id))) fig.suptitle('Raw Data (plate #{})'.format(str(plate.id)))
grid = mpl_toolkits.axes_grid1.Grid(fig, 111, nrows_ncols=(plate.rows, plate.cols), axes_pad=(0.1, 0.25), add_all=True, share_x=True, share_y=True, share_all=True) grid = mpl_toolkits.axes_grid1.Grid(fig, 111,
nrows_ncols=(plate.rows,
plate.cols),
axes_pad=(0.1, 0.25),
add_all=True,
share_x=True,
share_y=True,
share_all=True)
for i in range(plate.wellnum): for i in range(plate.wellnum):
well = plate.wells[i] well = plate.wells[i]
x = plate.temprange # set values for the x axis to the given temperature range # set values for the x axis to the given temperature range
y = well.raw # grab y values from the raw data of the well x = plate.temprange
# grab y values from the raw data of the well
y = well.raw
ax = grid[i] ax = grid[i]
# set title of current subplot to well identifier
#ax = fig.add_subplot(plate.rows, plate.cols, i+1) ax.set_title(well.name, size=6)
ax.set_title(well.name, size=6) # set title of current subplot to well identifier
if well in plate.denatured_wells: if well in plate.denatured_wells:
ax.patch.set_facecolor('#FFD6D6') ax.patch.set_facecolor('#FFD6D6')
ax.xaxis.set_major_locator(ticker.MaxNLocator(4)) # only show three tickmarks on both axes # only show three tickmarks on both axes
ax.xaxis.set_major_locator(ticker.MaxNLocator(4))
ax.yaxis.set_major_locator(ticker.MaxNLocator(4)) ax.yaxis.set_major_locator(ticker.MaxNLocator(4))
ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8', alpha=0.5) # shade lower cutoff area ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8',
ax.axvspan(plate.tm_cutoff_high, plate.t2, facecolor='0.8', alpha=0.5) # shade higher cutoff area alpha=0.5) # shade lower cutoff area
for label in ax.get_xticklabels() + ax.get_yticklabels(): # set fontsize for all tick labels to xx-small ax.axvspan(plate.tm_cutoff_high, plate.t2, facecolor='0.8',
alpha=0.5) # shade higher cutoff area
# set fontsize for all tick labels to xx-small
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontsize(6) label.set_fontsize(6)
ax.plot(x, y) ax.plot(x, y)
fig.tight_layout() fig.tight_layout()
canvas.draw() canvas.draw()
#ax = grid[i]
#ax.axhline(color='r')
#ax.autoscale(enable=True, axis='y', tight=True)
#ax.set_title(well.name, size='xx-small')
#ax.plot(x, 1000*np.random.random(76))
#ax.set_yscale('log')
#for plot_num in range(1, plate.wellnum + 1):
# well = plate.wells[plot_num - 1]
# #ax = fig.add_subplot(plate.rows, plate.cols, plot_num)
# ax.autoscale(tight=True)
# ax.plot(plate.temprange, well.raw)
# ax.set_title(well.name, size='xx-small')
# if well in plate.denatured_wells:
# ax.patch.set_facecolor('#FFD6D6')
#for plot_num in range(1, plate.wellnum + 1):
# ax = fig.add_subplot(plate.rows, plate.cols, plot_num)
# ax.autoscale(tight=True)
# fig3 = canvas.fig # new figure
# fig3.suptitle('Raw Data (plate #{})'.format(str(plate.id))) # set title
#
# for plot_num in range(1, plate.wellnum + 1): # iterate over all wells
# well = plate.wells[plot_num - 1] # get single well based on current plot number
# ax = fig3.add_subplot(plate.rows, plate.cols, plot_num) # add new subplot
# ax = fig3.add_axes(plate.rows, plate.cols, plot_num)
# ax.autoscale(tight=True) # scale to data
# ax.set_title(well.name, size='xx-small') # set title of current subplot to well identifier
#
# if well in plate.denatured_wells:
# ax.patch.set_facecolor('#FFD6D6')
#
# if plot_num == plate.wellnum - plate.cols + 1: # add axis label to the subplot in the bottom left corner of the figure
# ax.set_xlabel(u'T [°C]', size='xx-small')
# ax.set_ylabel('I', size='xx-small')
#
# x = plate.temprange # set values for the x axis to the given temperature range
# y = well.raw # grab y values from the raw data of the well
#
# ax.xaxis.set_major_locator(ticker.MaxNLocator(4)) # only show three tickmarks on both axes
# ax.yaxis.set_major_locator(ticker.MaxNLocator(4))
# ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8', alpha=0.5) # shade lower cutoff area
# ax.axvspan(plate.tm_cutoff_high, plate.t2, facecolor='0.8', alpha=0.5) # shade higher cutoff area
# for label in ax.get_xticklabels() + ax.get_yticklabels(): # set fontsize for all tick labels to xx-small
# label.set_fontsize('xx-small')
#
# cax = ax.plot(x, y) # plot data to the current subplot
# def _plot_wrapper(self, plot, plate):
#
# if plot == 'raw':
# fig, ax = self._plot_raw(plate)
# elif plot == 'derivative':
# fig, ax = self._plot_derivative(plate)
# elif plot == 'tm_heatmap':
# fig, ax = self._plot_tm_heatmap_single(plate)
# else:
# raise NotImplementedError
# fig = None
# ax = None
# return (fig, ax)
#
# def plot_all(self):
#
# figures = []
#
# for plate in self.experiment.plates:
#
# figures.append(self._plot_wrapper('raw', plate))
# figures.append(self._plot_wrapper('derivative', plate))
# figures.append(self._plot_wrapper('tm_heatmap', plate))
#
# if len(self.experiment.plates) > 1:
# figures.append(self._plot_wrapper('tm_heatmap', self.experiment.avg_plate))
#
# return figures