1
0
Fork 0
mirror of https://github.com/Athemis/PyDSF.git synced 2025-04-05 14:46:03 +00:00

Clean-up; PEP8-compliance

This commit is contained in:
Alexander Minges 2015-07-06 16:00:12 +02:00
parent fef87a6657
commit a5eb072d4a

322
pydsf.py
View file

@ -1,18 +1,14 @@
#! /usr/bin/env python2
#! /usr/bin/env python
# -*- coding: utf-8 -*-
import csv
import random
try:
import matplotlib as mpl
#import mpl_toolkits.axes_grid
import mpl_toolkits.axes_grid1
mpl.use('Qt5Agg')
mpl.interactive(True)
import matplotlib.ticker as ticker
import matplotlib.patches as mpatches
import matplotlib.gridspec as gridspec
except ImportError:
raise ImportError('----- Matplotlib must be installed. -----')
@ -27,13 +23,14 @@ except ImportError:
raise ImportError('----- NumPy must be installed. -----')
try:
from scipy.signal import filtfilt, butter, find_peaks_cwt
from scipy.signal import filtfilt, butter
from scipy import interpolate
except ImportError:
raise ImportError('----- SciPy must be installed. -----')
class Well:
def __init__(self, owner):
self.owner = owner
self.name = None
@ -59,7 +56,8 @@ class Well:
"""
Calculate a spline that represents the smoothed data points
"""
spline = interpolate.InterpolatedUnivariateSpline(self.owner.temprange, y)
t_range = self.owner.temprange
spline = interpolate.InterpolatedUnivariateSpline(t_range, y)
return spline
def calc_derivatives(self, spline='filtered'):
@ -87,8 +85,12 @@ class Well:
# First assume that the well is denatured
self.owner.denatured_wells.append(self)
if self.owner.tm_cutoff_low != self.owner.t1 or self.owner.tm_cutoff_high != self.owner.t1:
x = np.arange(self.owner.tm_cutoff_low, self.owner.tm_cutoff_high + 1, self.owner.dt, dtype=np.dtype(np.float))
if (self.owner.tm_cutoff_low != self.owner.t1 or
self.owner.tm_cutoff_high != self.owner.t1):
x = np.arange(self.owner.tm_cutoff_low,
self.owner.tm_cutoff_high + 1,
self.owner.dt,
dtype=np.dtype(np.float))
x = self.owner.temprange
y = self.derivatives[1]
@ -107,7 +109,9 @@ class Well:
max_y = y[peak]
max_i = peak
if y[max_i] > 0: # if value of second derivative is positive, choose identified position as peak candidate
if y[max_i] > 0:
# if value of second derivative is positive, choose identified
# position as peak candidate
tm = x[max_i]
else:
return np.NaN # else discard
@ -115,9 +119,12 @@ class Well:
return np.NaN # In case of error, return no peak
try:
if tm and tm >= self.owner.tm_cutoff_low and tm <= self.owner.tm_cutoff_high:
tm = round(peakutils.interpolate(x, y, width=3, ind=[max_i])[0], 2)
self.owner.denatured_wells.remove(self) # If everything is fine, remove the denatured flag
if (tm and tm >= self.owner.tm_cutoff_low and
tm <= self.owner.tm_cutoff_high):
tm = round(peakutils.interpolate(x, y, width=3,
ind=[max_i])[0], 2)
self.owner.denatured_wells.remove(self)
# If everything is fine, remove the denatured flag
return tm # and return the Tm
else:
return np.NaN # otherwise, return NaN
@ -126,33 +133,41 @@ class Well:
def is_denatured(self):
"""
Check if the well is denatured. Returns true if the well has been already flagged as
denatured, no Tm was found, or if the initial signal intensity is above a user definded
threshold.
Check if the well is denatured. Returns true if the well has been
already flagged as denatured, no Tm was found, or if the initial
signal intensity is above a user definded threshold.
"""
denatured = True # Assumption is that the well is denatured
if self in self.owner.denatured_wells: # check if the well is already flagged as denatured
if self in self.owner.denatured_wells:
# check if the well is already flagged as denatured
return denatured # return true if it is
if self.tm and (self.tm <= self.owner.tm_cutoff_low or self.tm >= self.owner.tm_cutoff_high):
if self.tm and (self.tm <= self.owner.tm_cutoff_low or
self.tm >= self.owner.tm_cutoff_high):
denatured = True
return denatured
for i in self.derivatives[1]: # Iterate over all points in the first derivative
for i in self.derivatives[1]:
# Iterate over all points in the first derivative
if i > 0: # If a positive slope is found
denatured = False # set denatured flag to False
reads = int(round(self.owner.reads / 10)) # How many values should be checked against the signal threshold:
reads = int(round(self.owner.reads / 10))
# How many values should be checked against the signal threshold:
# 1/10 of the total number of data point
read = 0 # Initialize running variable representing the current data point
read = 0
# Initialize running variable representing the current data point
if not denatured:
for j in self.filtered: # Iterate over the filtered data
if self.owner.signal_threshold: # If a signal threshold was defined
if j > self.owner.signal_threshold and read <= reads: # iterate over 1/10 of all data points
if self.owner.signal_threshold:
# If a signal threshold was defined
if j > self.owner.signal_threshold and read <= reads:
# iterate over 1/10 of all data points
# and check for values larger than the threshold.
denatured = True # Set flag to True if a match is found
denatured = True
# Set flag to True if a match is found
print("{}: {}".format(self.name, j))
return denatured # and return
read += 1
@ -178,8 +193,10 @@ class Well:
class Experiment:
def __init__(self, type, gui=None, files=None, replicates=None, t1=25, t2=95, dt=1, cols=12, rows=8,
cutoff_low=None, cutoff_high=None, signal_threshold=None, color_range=None, baseline_correction=False):
def __init__(self, type, gui=None, files=None, replicates=None, t1=25,
t2=95, dt=1, cols=12, rows=8, cutoff_low=None,
cutoff_high=None, signal_threshold=None, color_range=None,
baseline_correction=False):
self.replicates = replicates
self.cols = cols
self.rows = rows
@ -216,16 +233,22 @@ class Experiment:
i = 1
for file in files:
plate = Plate(type=self.type, owner=self, filename=file, t1=self.t1, t2=self.t2, dt=self.dt, cols=self.cols,
rows=self.rows, cutoff_low=self.tm_cutoff_low, cutoff_high=self.tm_cutoff_high,
signal_threshold=self.signal_threshold, color_range=self.color_range)
plate = Plate(type=self.type, owner=self, filename=file,
t1=self.t1, t2=self.t2, dt=self.dt, cols=self.cols,
rows=self.rows, cutoff_low=self.tm_cutoff_low,
cutoff_high=self.tm_cutoff_high,
signal_threshold=self.signal_threshold,
color_range=self.color_range)
plate.id = i
self.plates.append(plate)
i += 1
if len(files) > 1:
self.avg_plate = Plate(type=self.type, owner=self, filename=None, t1=self.t1, t2=self.t2, dt=self.dt,
cols=self.cols, rows=self.rows, cutoff_low=self.tm_cutoff_low,
cutoff_high=self.tm_cutoff_high, signal_threshold=self.signal_threshold,
self.avg_plate = Plate(type=self.type, owner=self, filename=None,
t1=self.t1, t2=self.t2, dt=self.dt,
cols=self.cols, rows=self.rows,
cutoff_low=self.tm_cutoff_low,
cutoff_high=self.tm_cutoff_high,
signal_threshold=self.signal_threshold,
color_range=self.color_range)
self.avg_plate.id = 'average'
@ -235,10 +258,6 @@ class Experiment:
if len(self.plates) > 1:
# self.tm_replicates = np.zeros( self.wellnum, dtype=float )
# self.tm_replicates_sd = np.zeros( self.wellnum, dtype=float )
for i in range(self.wellnum):
tmp = []
for plate in self.plates:
@ -247,17 +266,17 @@ class Experiment:
if plate.wells[i] not in plate.denatured_wells:
tmp.append(tm)
if len(tmp) > 0:
# self.avg_plate.wells[i].tm = (sum(tmp)/len(tmp))
self.avg_plate.wells[i].tm = np.mean(tmp)
self.avg_plate.wells[i].tm_sd = np.std(tmp)
# self.tm_replicates[i] = (sum(tmp)/len(tmp))
else:
self.avg_plate.denatured_wells.append(self.avg_plate.wells[i])
append_well = self.avg_plate.wells[i]
self.avg_plate.denatured_wells.append(append_well)
class Plate:
def __init__(self, type, owner, id=None, filename=None, replicates=None, t1=None, t2=None, dt=None, cols=12, rows=8,
cutoff_low=None, cutoff_high=None, signal_threshold=None, color_range=None):
def __init__(self, type, owner, id=None, filename=None, replicates=None,
t1=None, t2=None, dt=None, cols=12, rows=8, cutoff_low=None,
cutoff_high=None, signal_threshold=None, color_range=None):
self.cols = cols
self.rows = rows
self.owner = owner
@ -305,7 +324,6 @@ class Plate:
well = Well(owner=self)
self.wells.append(well)
def analytikJena(self):
"""
Data processing for Analytik Jena qTower 2.0 export files
@ -331,6 +349,7 @@ class Plate:
try:
# Try to access data file in the given path
with open(self.filename) as f:
f.close()
pass
except IOError as e:
# If the file is not found, or not accessible: abort
@ -371,12 +390,18 @@ class Plate:
def write_avg_tm_table(self, filename):
with open(filename, 'w') as f:
f.write('#{:<4s}{:>13s}{:>13s}\n'.format('"ID"', '"Tm [°C]"', '"SD"'))
f.write('#{:<4s}{:>13s}{:>13s}\n'.format('"ID"',
'"Tm [°C]"',
'"SD"'))
for well in self.wells:
if np.isnan(well.tm) or well in self.denatured_wells:
f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name, 'NaN', 'NaN'))
f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name,
'NaN',
'NaN'))
else:
f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name, str(well.tm), str(well.tm_sd)))
f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name,
str(well.tm),
str(well.tm_sd)))
def write_raw_table(self, filename):
with open(filename, 'w') as f:
@ -391,7 +416,8 @@ class Plate:
f.write('{:<10s}'.format(str(t)))
for well in self.wells:
d = well.raw[i]
f.write('{:>-15.3f}'.format(float(np.round(d, decimals=3))))
d_rounded = float(np.round(d, decimals=3))
f.write('{:>-15.3f}'.format(d_rounded))
f.write('\n')
i += 1
@ -408,7 +434,8 @@ class Plate:
f.write('{:<10s}'.format(str(t)))
for well in self.wells:
d = well.filtered[i]
f.write('{:>-15.3f}'.format(float(np.round(d, decimals=3))))
d_rounded = float(np.round(d, decimals=3))
f.write('{:>-15.3f}'.format(d_rounded))
f.write('\n')
i += 1
@ -425,7 +452,8 @@ class Plate:
f.write('{:<10s}'.format(str(t)))
for well in self.wells:
d = well.derivatives[1][i]
f.write('{:>-15.3f}'.format(float(np.round(d, decimals=3))))
d_rounded = float(np.round(d, decimals=3))
f.write('{:>-15.3f}'.format(d_rounded))
f.write('\n')
i += 1
@ -438,6 +466,7 @@ class Plate:
def update_progress_bar(bar, value):
bar.setValue(value)
class PlotResults():
def plot_tm_heatmap_single(self, plate, widget):
@ -451,18 +480,23 @@ class PlotResults():
c_values = [] # Array holding the color values aka Tm
dx_values = []
dy_values = []
dc_values = []
canvas = widget.canvas
canvas.clear()
for well in plate.wells: # Iterate over all wells
if well not in plate.denatured_wells: # Check if well is denatured (no Tm found)
if well not in plate.denatured_wells:
# Check if well is denatured (no Tm found)
c = well.tm # If not, set color to Tm
if c < plate.tm_cutoff_low: # Check if Tm is lower that the cutoff
c = plate.tm_cutoff_low # If it is, set color to cutoff
elif c > plate.tm_cutoff_high: # Check if Tm is higher that the cutoff
c = plate.tm_cutoff_high # If it is, set color to cutoff
if c < plate.tm_cutoff_low:
# Check if Tm is lower that the cutoff
c = plate.tm_cutoff_low
# If it is, set color to cutoff
elif c > plate.tm_cutoff_high:
# Check if Tm is higher that the cutoff
c = plate.tm_cutoff_high
# If it is, set color to cutoff
else: # If the plate is denatured
c = plate.tm_cutoff_low # Set its color to the low cutoff
c = plate.tm_cutoff_low
# Set its color to the low cutoff
dx_values.append(x)
dy_values.append(y)
x_values.append(x) # Add values to the respective arrays
@ -476,15 +510,22 @@ class PlotResults():
fig1 = canvas.fig # new figure
ax1 = fig1.add_subplot(1, 1, 1) # A single canvas
ax1.autoscale(tight=True) # Scale plate size
ax1.xaxis.set_major_locator(ticker.MaxNLocator(plate.cols + 1)) # n columns
ax1.yaxis.set_major_locator(ticker.MaxNLocator(plate.rows + 1)) # n rows
ax1.xaxis.set_major_locator(ticker.MaxNLocator(plate.cols + 1))
# n columns
ax1.yaxis.set_major_locator(ticker.MaxNLocator(plate.rows + 1))
# n rows
if plate.color_range:
cax = ax1.scatter(x_values, y_values, s=305, c=c_values, marker='s', vmin=plate.color_range[0],
vmax=plate.color_range[1]) # plot wells and color using the colormap
# plot wells and color using the colormap
cax = ax1.scatter(x_values, y_values, s=305, c=c_values,
marker='s', vmin=plate.color_range[0],
vmax=plate.color_range[1])
else:
cax = ax1.scatter(x_values, y_values, s=305, c=c_values, marker='s') # plot wells and color using the colormap
# plot wells and color using the colormap
cax = ax1.scatter(x_values, y_values, s=305, c=c_values,
marker='s')
cax2 = ax1.scatter(dx_values, dy_values, s=80, c='white', marker='x', linewidths=(1.5,))
ax1.scatter(dx_values, dy_values, s=80, c='white', marker='x',
linewidths=(1.5,))
ax1.invert_yaxis() # invert y axis to math plate layout
cbar = fig1.colorbar(cax) # show colorbar
ax1.set_xlabel('Columns') # set axis and colorbar label
@ -506,45 +547,57 @@ class PlotResults():
canvas = widget.canvas
canvas.clear()
fig2 = canvas.fig # new figure
fig2.suptitle('Individual Derivatives (plate #{})'.format(str(plate.id))) # set title
# set title
fig2.suptitle(
'Individual Derivatives (plate #{})'.format(str(plate.id)))
for plot_num in range(1, plate.wellnum + 1): # iterate over all wells
well = plate.wells[plot_num - 1] # get single well based on current plot number
ax = fig2.add_subplot(plate.rows, plate.cols, plot_num) # add new subplot
well = plate.wells[plot_num - 1]
# get single well based on current plot number
ax = fig2.add_subplot(plate.rows, plate.cols, plot_num)
# add new subplot
ax.autoscale(tight=True) # scale to data
ax.set_title(well.name, size='xx-small') # set title of current subplot to well identifier
ax.set_title(well.name, size='xx-small')
# set title of current subplot to well identifier
if well in plate.denatured_wells:
ax.patch.set_facecolor('#FFD6D6')
if plot_num == plate.wellnum - plate.cols + 1: # add axis label to the subplot in the bottom left corner of the figure
# add axis label to the subplot in the bottom left corner of the
# figure
if plot_num == plate.wellnum - plate.cols + 1:
ax.set_xlabel(u'T [°C]', size='xx-small')
ax.set_ylabel('dI/dT', size='xx-small')
x = plate.temprange # set values for the x axis to the given temperature range
# set values for the x axis to the given temperature range
x = plate.temprange
if well.baseline_correction:
print(well.baseline)
y = well.derivatives[1] - well.baseline
else:
y = well.derivatives[1] # grab y values from the first derivative of the well
# grab y values from the first derivative of the well
y = well.derivatives[1]
ax.xaxis.set_major_locator(ticker.MaxNLocator(4)) # only show three tickmarks on both axes
# only show three tickmarks on both axes
ax.xaxis.set_major_locator(ticker.MaxNLocator(4))
ax.yaxis.set_major_locator(ticker.MaxNLocator(4))
if well not in plate.denatured_wells: # check if well is denatured (without determined Tm)
# check if well is denatured (without determined Tm)
if well not in plate.denatured_wells:
tm = well.tm # if not, grab its Tm
else:
tm = np.NaN # else set Tm to np.NaN
if tm:
ax.axvline(x=tm) # plot vertical line at the Tm
ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8', alpha=0.5) # shade lower cutoff area
ax.axvspan(plate.tm_cutoff_high, plate.t2, facecolor='0.8', alpha=0.5) # shade higher cutoff area
for label in ax.get_xticklabels() + ax.get_yticklabels(): # set fontsize for all tick labels to xx-small
ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8',
alpha=0.5) # shade lower cutoff area
ax.axvspan(plate.tm_cutoff_high, plate.t2, facecolor='0.8',
alpha=0.5) # shade higher cutoff area
# set fontsize for all tick labels to xx-small
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontsize('xx-small')
cax = ax.plot(x, y) # plot data to the current subplot
ax.plot(x, y) # plot data to the current subplot
canvas.draw()
def plot_raw(self, plate, widget):
"""
Plot raw data (Fig. 3)
@ -558,108 +611,35 @@ class PlotResults():
fig = canvas.fig
fig.suptitle('Raw Data (plate #{})'.format(str(plate.id)))
grid = mpl_toolkits.axes_grid1.Grid(fig, 111, nrows_ncols=(plate.rows, plate.cols), axes_pad=(0.1, 0.25), add_all=True, share_x=True, share_y=True, share_all=True)
grid = mpl_toolkits.axes_grid1.Grid(fig, 111,
nrows_ncols=(plate.rows,
plate.cols),
axes_pad=(0.1, 0.25),
add_all=True,
share_x=True,
share_y=True,
share_all=True)
for i in range(plate.wellnum):
well = plate.wells[i]
x = plate.temprange # set values for the x axis to the given temperature range
y = well.raw # grab y values from the raw data of the well
# set values for the x axis to the given temperature range
x = plate.temprange
# grab y values from the raw data of the well
y = well.raw
ax = grid[i]
#ax = fig.add_subplot(plate.rows, plate.cols, i+1)
ax.set_title(well.name, size=6) # set title of current subplot to well identifier
# set title of current subplot to well identifier
ax.set_title(well.name, size=6)
if well in plate.denatured_wells:
ax.patch.set_facecolor('#FFD6D6')
ax.xaxis.set_major_locator(ticker.MaxNLocator(4)) # only show three tickmarks on both axes
# only show three tickmarks on both axes
ax.xaxis.set_major_locator(ticker.MaxNLocator(4))
ax.yaxis.set_major_locator(ticker.MaxNLocator(4))
ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8', alpha=0.5) # shade lower cutoff area
ax.axvspan(plate.tm_cutoff_high, plate.t2, facecolor='0.8', alpha=0.5) # shade higher cutoff area
for label in ax.get_xticklabels() + ax.get_yticklabels(): # set fontsize for all tick labels to xx-small
ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8',
alpha=0.5) # shade lower cutoff area
ax.axvspan(plate.tm_cutoff_high, plate.t2, facecolor='0.8',
alpha=0.5) # shade higher cutoff area
# set fontsize for all tick labels to xx-small
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontsize(6)
ax.plot(x, y)
fig.tight_layout()
canvas.draw()
#ax = grid[i]
#ax.axhline(color='r')
#ax.autoscale(enable=True, axis='y', tight=True)
#ax.set_title(well.name, size='xx-small')
#ax.plot(x, 1000*np.random.random(76))
#ax.set_yscale('log')
#for plot_num in range(1, plate.wellnum + 1):
# well = plate.wells[plot_num - 1]
# #ax = fig.add_subplot(plate.rows, plate.cols, plot_num)
# ax.autoscale(tight=True)
# ax.plot(plate.temprange, well.raw)
# ax.set_title(well.name, size='xx-small')
# if well in plate.denatured_wells:
# ax.patch.set_facecolor('#FFD6D6')
#for plot_num in range(1, plate.wellnum + 1):
# ax = fig.add_subplot(plate.rows, plate.cols, plot_num)
# ax.autoscale(tight=True)
# fig3 = canvas.fig # new figure
# fig3.suptitle('Raw Data (plate #{})'.format(str(plate.id))) # set title
#
# for plot_num in range(1, plate.wellnum + 1): # iterate over all wells
# well = plate.wells[plot_num - 1] # get single well based on current plot number
# ax = fig3.add_subplot(plate.rows, plate.cols, plot_num) # add new subplot
# ax = fig3.add_axes(plate.rows, plate.cols, plot_num)
# ax.autoscale(tight=True) # scale to data
# ax.set_title(well.name, size='xx-small') # set title of current subplot to well identifier
#
# if well in plate.denatured_wells:
# ax.patch.set_facecolor('#FFD6D6')
#
# if plot_num == plate.wellnum - plate.cols + 1: # add axis label to the subplot in the bottom left corner of the figure
# ax.set_xlabel(u'T [°C]', size='xx-small')
# ax.set_ylabel('I', size='xx-small')
#
# x = plate.temprange # set values for the x axis to the given temperature range
# y = well.raw # grab y values from the raw data of the well
#
# ax.xaxis.set_major_locator(ticker.MaxNLocator(4)) # only show three tickmarks on both axes
# ax.yaxis.set_major_locator(ticker.MaxNLocator(4))
# ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8', alpha=0.5) # shade lower cutoff area
# ax.axvspan(plate.tm_cutoff_high, plate.t2, facecolor='0.8', alpha=0.5) # shade higher cutoff area
# for label in ax.get_xticklabels() + ax.get_yticklabels(): # set fontsize for all tick labels to xx-small
# label.set_fontsize('xx-small')
#
# cax = ax.plot(x, y) # plot data to the current subplot
# def _plot_wrapper(self, plot, plate):
#
# if plot == 'raw':
# fig, ax = self._plot_raw(plate)
# elif plot == 'derivative':
# fig, ax = self._plot_derivative(plate)
# elif plot == 'tm_heatmap':
# fig, ax = self._plot_tm_heatmap_single(plate)
# else:
# raise NotImplementedError
# fig = None
# ax = None
# return (fig, ax)
#
# def plot_all(self):
#
# figures = []
#
# for plate in self.experiment.plates:
#
# figures.append(self._plot_wrapper('raw', plate))
# figures.append(self._plot_wrapper('derivative', plate))
# figures.append(self._plot_wrapper('tm_heatmap', plate))
#
# if len(self.experiment.plates) > 1:
# figures.append(self._plot_wrapper('tm_heatmap', self.experiment.avg_plate))
#
# return figures