mirror of
https://github.com/Athemis/PyDSF.git
synced 2025-04-05 14:46:03 +00:00
Refactor Tm finding code; Fix cutoff
This commit is contained in:
parent
9e7fdae9bf
commit
e099bd8694
1 changed files with 49 additions and 26 deletions
75
pydsf.py
75
pydsf.py
|
@ -105,6 +105,35 @@ class Well:
|
|||
except Exception:
|
||||
return np.NaN
|
||||
|
||||
def temp_within_cutoff(self, value):
|
||||
"""
|
||||
Checks if a given value is within the defined temperature cutoff.
|
||||
"""
|
||||
if (value >= self.owner.tm_cutoff_low and
|
||||
value <= self.owner.tm_cutoff_high):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def interpolate_tm(self, x, y, max_i, tm):
|
||||
"""
|
||||
Performs an interpolation to fine-tune a Tm value by interpolating
|
||||
a gaussian function around the approximate peak position.
|
||||
"""
|
||||
try:
|
||||
# If tm is within cutoff, perform the interpolation
|
||||
if (self.temp_within_cutoff(tm)):
|
||||
tm = round(peakutils.interpolate(x, y,
|
||||
width=3,
|
||||
ind=[max_i])[0], 2)
|
||||
# Remove the denatured flag
|
||||
self.owner.denatured_wells.remove(self)
|
||||
return tm # and return the Tm
|
||||
else:
|
||||
return np.NaN # otherwise, return NaN
|
||||
except Exception:
|
||||
return np.NaN # In case of error, return NaN
|
||||
|
||||
def calc_tm(self):
|
||||
"""
|
||||
Calculate the Tm of the well. Returns either the Tm or 'np.NaN'.
|
||||
|
@ -116,49 +145,43 @@ class Well:
|
|||
# First assume that the well is denatured
|
||||
self.owner.denatured_wells.append(self)
|
||||
|
||||
# If a temperatur cutoff has been set and the minimum/maximum
|
||||
# temperature values of the provided data is not within that range,
|
||||
# cut data accordingly.
|
||||
if (self.owner.tm_cutoff_low != self.owner.t1 or
|
||||
self.owner.tm_cutoff_high != self.owner.t1):
|
||||
x = np.arange(self.owner.tm_cutoff_low,
|
||||
self.owner.tm_cutoff_high + 1, self.owner.dt,
|
||||
dtype=np.dtype(np.float))
|
||||
# Otherwise use the whole temperature range of the data
|
||||
else:
|
||||
x = self.owner.temprange
|
||||
# Use the whole temperature range for x. We'll check the cutoff later
|
||||
x = self.owner.temprange
|
||||
|
||||
# Use second derivative as y
|
||||
y = self.derivatives[1]
|
||||
|
||||
# Substract baseline from y
|
||||
# Substract baseline from y if requested
|
||||
if self.baseline_correction:
|
||||
y = y - self.baseline
|
||||
|
||||
# Run peak finding; return NaN in case of error
|
||||
try:
|
||||
peak_indexes = peakutils.indexes(y, thres=0.3)
|
||||
peaks_x = peakutils.interpolate(x, y, width=3, ind=peak_indexes)
|
||||
|
||||
if len(peaks_x) > 0:
|
||||
tm = max(peaks_x)
|
||||
# loop over results to find maximum value for peak candidates
|
||||
max_y = None # current maximum
|
||||
max_i = None # index of current maximum
|
||||
for peak in peak_indexes:
|
||||
# if current peak is larger than old maximum and its
|
||||
# second derivative is positive, replace maximum with
|
||||
# current peak
|
||||
if (not max_y or y[peak] > max_y) and y[peak] > 0:
|
||||
max_y = y[peak]
|
||||
max_i = peak
|
||||
|
||||
# If a global maximum is identified, return use its x value as
|
||||
# melting temperature
|
||||
if max_y and max_i:
|
||||
tm = x[max_i]
|
||||
return self.interpolate_tm(x, y, max_i, tm)
|
||||
# if no maximum is found, return NaN
|
||||
else:
|
||||
return np.NaN
|
||||
|
||||
except Exception:
|
||||
return np.NaN # In case of error, return no peak
|
||||
|
||||
try:
|
||||
if (tm and tm >= self.owner.tm_cutoff_low and
|
||||
tm <= self.owner.tm_cutoff_high):
|
||||
self.owner.denatured_wells.remove(self)
|
||||
# If everything is fine, remove the denatured flag
|
||||
return tm # and return the Tm
|
||||
else:
|
||||
return np.NaN # otherwise, return NaN
|
||||
except Exception:
|
||||
return np.NaN # In case of error, return NaN
|
||||
|
||||
def is_denatured(self):
|
||||
"""
|
||||
Check if the well is denatured. Returns true if the well has been
|
||||
|
|
Loading…
Add table
Reference in a new issue