mirror of
https://github.com/Athemis/PyDSF.git
synced 2025-04-05 14:46:03 +00:00
Migrated to Python3; Switched to Peakutils for peak finding routines; CHanged behaviour of temperature cut-offs
This commit is contained in:
parent
41b252a3c9
commit
ff7f10438b
7 changed files with 93 additions and 772 deletions
735
peakdetect.py
735
peakdetect.py
|
@ -1,735 +0,0 @@
|
||||||
#!/usr/bin/env python2
|
|
||||||
import numpy as np
|
|
||||||
from math import pi, log
|
|
||||||
import pylab
|
|
||||||
from scipy import fft, ifft
|
|
||||||
from scipy.optimize import curve_fit
|
|
||||||
|
|
||||||
i = 10000
|
|
||||||
x = np.linspace(0, 3.5 * pi, i)
|
|
||||||
y = (0.3*np.sin(x) + np.sin(1.3 * x) + 0.9 * np.sin(4.2 * x) + 0.06 *
|
|
||||||
np.random.randn(i))
|
|
||||||
|
|
||||||
|
|
||||||
def _datacheck_peakdetect(x_axis, y_axis):
|
|
||||||
if x_axis is None:
|
|
||||||
x_axis = range(len(y_axis))
|
|
||||||
|
|
||||||
if len(y_axis) != len(x_axis):
|
|
||||||
raise (ValueError,
|
|
||||||
'Input vectors y_axis and x_axis must have same length')
|
|
||||||
|
|
||||||
#needs to be a numpy array
|
|
||||||
y_axis = np.array(y_axis)
|
|
||||||
x_axis = np.array(x_axis)
|
|
||||||
return x_axis, y_axis
|
|
||||||
|
|
||||||
def _peakdetect_parabole_fitter(raw_peaks, x_axis, y_axis, points):
|
|
||||||
"""
|
|
||||||
Performs the actual parabole fitting for the peakdetect_parabole function.
|
|
||||||
|
|
||||||
keyword arguments:
|
|
||||||
raw_peaks -- A list of either the maximium or the minimum peaks, as given
|
|
||||||
by the peakdetect_zero_crossing function, with index used as x-axis
|
|
||||||
x_axis -- A numpy list of all the x values
|
|
||||||
y_axis -- A numpy list of all the y values
|
|
||||||
points -- How many points around the peak should be used during curve
|
|
||||||
fitting, must be odd.
|
|
||||||
|
|
||||||
return -- A list giving all the peaks and the fitted waveform, format:
|
|
||||||
[[x, y, [fitted_x, fitted_y]]]
|
|
||||||
|
|
||||||
"""
|
|
||||||
func = lambda x, k, tau, m: k * ((x - tau) ** 2) + m
|
|
||||||
fitted_peaks = []
|
|
||||||
for peak in raw_peaks:
|
|
||||||
index = peak[0]
|
|
||||||
x_data = x_axis[index - points // 2: index + points // 2 + 1]
|
|
||||||
y_data = y_axis[index - points // 2: index + points // 2 + 1]
|
|
||||||
# get a first approximation of tau (peak position in time)
|
|
||||||
tau = x_axis[index]
|
|
||||||
# get a first approximation of peak amplitude
|
|
||||||
m = peak[1]
|
|
||||||
|
|
||||||
# build list of approximations
|
|
||||||
# k = -m as first approximation?
|
|
||||||
p0 = (-m, tau, m)
|
|
||||||
popt, pcov = curve_fit(func, x_data, y_data, p0)
|
|
||||||
# retrieve tau and m i.e x and y value of peak
|
|
||||||
x, y = popt[1:3]
|
|
||||||
|
|
||||||
# create a high resolution data set for the fitted waveform
|
|
||||||
x2 = np.linspace(x_data[0], x_data[-1], points * 10)
|
|
||||||
y2 = func(x2, *popt)
|
|
||||||
|
|
||||||
fitted_peaks.append([x, y, [x2, y2]])
|
|
||||||
|
|
||||||
return fitted_peaks
|
|
||||||
|
|
||||||
|
|
||||||
def peakdetect(y_axis, x_axis = None, lookahead = 300, delta=0):
|
|
||||||
"""
|
|
||||||
Converted from/based on a MATLAB script at:
|
|
||||||
http://billauer.co.il/peakdet.html
|
|
||||||
|
|
||||||
function for detecting local maximas and minmias in a signal.
|
|
||||||
Discovers peaks by searching for values which are surrounded by lower
|
|
||||||
or larger values for maximas and minimas respectively
|
|
||||||
|
|
||||||
keyword arguments:
|
|
||||||
y_axis -- A list containg the signal over which to find peaks
|
|
||||||
x_axis -- (optional) A x-axis whose values correspond to the y_axis list
|
|
||||||
and is used in the return to specify the postion of the peaks. If
|
|
||||||
omitted an index of the y_axis is used. (default: None)
|
|
||||||
lookahead -- (optional) distance to look ahead from a peak candidate to
|
|
||||||
determine if it is the actual peak (default: 200)
|
|
||||||
'(sample / period) / f' where '4 >= f >= 1.25' might be a good value
|
|
||||||
delta -- (optional) this specifies a minimum difference between a peak and
|
|
||||||
the following points, before a peak may be considered a peak. Useful
|
|
||||||
to hinder the function from picking up false peaks towards to end of
|
|
||||||
the signal. To work well delta should be set to delta >= RMSnoise * 5.
|
|
||||||
(default: 0)
|
|
||||||
delta function causes a 20% decrease in speed, when omitted
|
|
||||||
Correctly used it can double the speed of the function
|
|
||||||
|
|
||||||
return -- two lists [max_peaks, min_peaks] containing the positive and
|
|
||||||
negative peaks respectively. Each cell of the lists contains a tupple
|
|
||||||
of: (position, peak_value)
|
|
||||||
to get the average peak value do: np.mean(max_peaks, 0)[1] on the
|
|
||||||
results to unpack one of the lists into x, y coordinates do:
|
|
||||||
x, y = zip(*tab)
|
|
||||||
"""
|
|
||||||
max_peaks = []
|
|
||||||
min_peaks = []
|
|
||||||
dump = [] #Used to pop the first hit which almost always is false
|
|
||||||
|
|
||||||
# check input data
|
|
||||||
x_axis, y_axis = _datacheck_peakdetect(x_axis, y_axis)
|
|
||||||
# store data length for later use
|
|
||||||
length = len(y_axis)
|
|
||||||
|
|
||||||
|
|
||||||
#perform some checks
|
|
||||||
if lookahead < 1:
|
|
||||||
raise ValueError, "Lookahead must be '1' or above in value"
|
|
||||||
if not (np.isscalar(delta) and delta >= 0):
|
|
||||||
raise ValueError, "delta must be a positive number"
|
|
||||||
|
|
||||||
#maxima and minima candidates are temporarily stored in
|
|
||||||
#mx and mn respectively
|
|
||||||
mn, mx = np.Inf, -np.Inf
|
|
||||||
|
|
||||||
#Only detect peak if there is 'lookahead' amount of points after it
|
|
||||||
for index, (x, y) in enumerate(zip(x_axis[:-lookahead],
|
|
||||||
y_axis[:-lookahead])):
|
|
||||||
if y > mx:
|
|
||||||
mx = y
|
|
||||||
mxpos = x
|
|
||||||
if y < mn:
|
|
||||||
mn = y
|
|
||||||
mnpos = x
|
|
||||||
|
|
||||||
####look for max####
|
|
||||||
if y < mx-delta and mx != np.Inf:
|
|
||||||
#Maxima peak candidate found
|
|
||||||
#look ahead in signal to ensure that this is a peak and not jitter
|
|
||||||
if y_axis[index:index+lookahead].max() < mx:
|
|
||||||
max_peaks.append([mxpos, mx])
|
|
||||||
dump.append(True)
|
|
||||||
#set algorithm to only find minima now
|
|
||||||
mx = np.Inf
|
|
||||||
mn = np.Inf
|
|
||||||
if index+lookahead >= length:
|
|
||||||
#end is within lookahead no more peaks can be found
|
|
||||||
break
|
|
||||||
continue
|
|
||||||
#else: #slows shit down this does
|
|
||||||
# mx = ahead
|
|
||||||
# mxpos = x_axis[np.where(y_axis[index:index+lookahead]==mx)]
|
|
||||||
|
|
||||||
####look for min####
|
|
||||||
if y > mn+delta and mn != -np.Inf:
|
|
||||||
#Minima peak candidate found
|
|
||||||
#look ahead in signal to ensure that this is a peak and not jitter
|
|
||||||
if y_axis[index:index+lookahead].min() > mn:
|
|
||||||
min_peaks.append([mnpos, mn])
|
|
||||||
dump.append(False)
|
|
||||||
#set algorithm to only find maxima now
|
|
||||||
mn = -np.Inf
|
|
||||||
mx = -np.Inf
|
|
||||||
if index+lookahead >= length:
|
|
||||||
#end is within lookahead no more peaks can be found
|
|
||||||
break
|
|
||||||
#else: #slows shit down this does
|
|
||||||
# mn = ahead
|
|
||||||
# mnpos = x_axis[np.where(y_axis[index:index+lookahead]==mn)]
|
|
||||||
|
|
||||||
|
|
||||||
#Remove the false hit on the first value of the y_axis
|
|
||||||
try:
|
|
||||||
if dump[0]:
|
|
||||||
max_peaks.pop(0)
|
|
||||||
else:
|
|
||||||
min_peaks.pop(0)
|
|
||||||
del dump
|
|
||||||
except IndexError:
|
|
||||||
#no peaks were found, should the function return empty lists?
|
|
||||||
pass
|
|
||||||
|
|
||||||
return [max_peaks, min_peaks]
|
|
||||||
|
|
||||||
|
|
||||||
def peakdetect_fft(y_axis, x_axis, pad_len = 5):
|
|
||||||
"""
|
|
||||||
Performs a FFT calculation on the data and zero-pads the results to
|
|
||||||
increase the time domain resolution after performing the inverse fft and
|
|
||||||
send the data to the 'peakdetect' function for peak
|
|
||||||
detection.
|
|
||||||
|
|
||||||
Omitting the x_axis is forbidden as it would make the resulting x_axis
|
|
||||||
value silly if it was returned as the index 50.234 or similar.
|
|
||||||
|
|
||||||
Will find at least 1 less peak then the 'peakdetect_zero_crossing'
|
|
||||||
function, but should result in a more precise value of the peak as
|
|
||||||
resolution has been increased. Some peaks are lost in an attempt to
|
|
||||||
minimize spectral leakage by calculating the fft between two zero
|
|
||||||
crossings for n amount of signal periods.
|
|
||||||
|
|
||||||
The biggest time eater in this function is the ifft and thereafter it's
|
|
||||||
the 'peakdetect' function which takes only half the time of the ifft.
|
|
||||||
Speed improvementd could include to check if 2**n points could be used for
|
|
||||||
fft and ifft or change the 'peakdetect' to the 'peakdetect_zero_crossing',
|
|
||||||
which is maybe 10 times faster than 'peakdetct'. The pro of 'peakdetect'
|
|
||||||
is that it resutls in one less lost peak. It should also be noted that the
|
|
||||||
time used by the ifft function can change greatly depending on the input.
|
|
||||||
|
|
||||||
keyword arguments:
|
|
||||||
y_axis -- A list containg the signal over which to find peaks
|
|
||||||
x_axis -- A x-axis whose values correspond to the y_axis list and is used
|
|
||||||
in the return to specify the postion of the peaks.
|
|
||||||
pad_len -- (optional) By how many times the time resolution should be
|
|
||||||
increased by, e.g. 1 doubles the resolution. The amount is rounded up
|
|
||||||
to the nearest 2 ** n amount (default: 5)
|
|
||||||
|
|
||||||
return -- two lists [max_peaks, min_peaks] containing the positive and
|
|
||||||
negative peaks respectively. Each cell of the lists contains a tupple
|
|
||||||
of: (position, peak_value)
|
|
||||||
to get the average peak value do: np.mean(max_peaks, 0)[1] on the
|
|
||||||
results to unpack one of the lists into x, y coordinates do:
|
|
||||||
x, y = zip(*tab)
|
|
||||||
"""
|
|
||||||
# check input data
|
|
||||||
x_axis, y_axis = _datacheck_peakdetect(x_axis, y_axis)
|
|
||||||
zero_indices = zero_crossings(y_axis, window = 11)
|
|
||||||
#select a n amount of periods
|
|
||||||
last_indice = - 1 - (1 - len(zero_indices) & 1)
|
|
||||||
# Calculate the fft between the first and last zero crossing
|
|
||||||
# this method could be ignored if the begining and the end of the signal
|
|
||||||
# are discardable as any errors induced from not using whole periods
|
|
||||||
# should mainly manifest in the beginning and the end of the signal, but
|
|
||||||
# not in the rest of the signal
|
|
||||||
fft_data = fft(y_axis[zero_indices[0]:zero_indices[last_indice]])
|
|
||||||
padd = lambda x, c: x[:len(x) // 2] + [0] * c + x[len(x) // 2:]
|
|
||||||
n = lambda x: int(log(x)/log(2)) + 1
|
|
||||||
# padds to 2**n amount of samples
|
|
||||||
fft_padded = padd(list(fft_data), 2 **
|
|
||||||
n(len(fft_data) * pad_len) - len(fft_data))
|
|
||||||
|
|
||||||
# There is amplitude decrease directly proportional to the sample increase
|
|
||||||
sf = len(fft_padded) / float(len(fft_data))
|
|
||||||
# There might be a leakage giving the result an imaginary component
|
|
||||||
# Return only the real component
|
|
||||||
y_axis_ifft = ifft(fft_padded).real * sf #(pad_len + 1)
|
|
||||||
x_axis_ifft = np.linspace(
|
|
||||||
x_axis[zero_indices[0]], x_axis[zero_indices[last_indice]],
|
|
||||||
len(y_axis_ifft))
|
|
||||||
# get the peaks to the interpolated waveform
|
|
||||||
max_peaks, min_peaks = peakdetect(y_axis_ifft, x_axis_ifft, 500,
|
|
||||||
delta = abs(np.diff(y_axis).max() * 2))
|
|
||||||
#max_peaks, min_peaks = peakdetect_zero_crossing(y_axis_ifft, x_axis_ifft)
|
|
||||||
|
|
||||||
# store one 20th of a period as waveform data
|
|
||||||
data_len = int(np.diff(zero_indices).mean()) / 10
|
|
||||||
data_len += 1 - data_len & 1
|
|
||||||
|
|
||||||
|
|
||||||
fitted_wave = []
|
|
||||||
for peaks in [max_peaks, min_peaks]:
|
|
||||||
peak_fit_tmp = []
|
|
||||||
index = 0
|
|
||||||
for peak in peaks:
|
|
||||||
index = np.where(x_axis_ifft[index:]==peak[0])[0][0] + index
|
|
||||||
x_fit_lim = x_axis_ifft[index - data_len // 2:
|
|
||||||
index + data_len // 2 + 1]
|
|
||||||
y_fit_lim = y_axis_ifft[index - data_len // 2:
|
|
||||||
index + data_len // 2 + 1]
|
|
||||||
|
|
||||||
peak_fit_tmp.append([x_fit_lim, y_fit_lim])
|
|
||||||
fitted_wave.append(peak_fit_tmp)
|
|
||||||
|
|
||||||
#pylab.plot(range(len(fft_data)), fft_data)
|
|
||||||
#pylab.show()
|
|
||||||
|
|
||||||
#pylab.plot(x_axis, y_axis)
|
|
||||||
#pylab.hold(True)
|
|
||||||
#pylab.plot(x_axis_ifft, y_axis_ifft)
|
|
||||||
#for max_p in max_peaks:
|
|
||||||
# pylab.plot(max_p[0], max_p[1], 'xr')
|
|
||||||
#pylab.show()
|
|
||||||
return [max_peaks, min_peaks]
|
|
||||||
|
|
||||||
|
|
||||||
def peakdetect_parabole(y_axis, x_axis, points = 9):
|
|
||||||
"""
|
|
||||||
Function for detecting local maximas and minmias in a signal.
|
|
||||||
Discovers peaks by fitting the model function: y = k (x - tau) ** 2 + m
|
|
||||||
to the peaks. The amount of points used in the fitting is set by the
|
|
||||||
points argument.
|
|
||||||
|
|
||||||
Omitting the x_axis is forbidden as it would make the resulting x_axis
|
|
||||||
value silly if it was returned as index 50.234 or similar.
|
|
||||||
|
|
||||||
will find the same amount of peaks as the 'peakdetect_zero_crossing'
|
|
||||||
function, but might result in a more precise value of the peak.
|
|
||||||
|
|
||||||
keyword arguments:
|
|
||||||
y_axis -- A list containg the signal over which to find peaks
|
|
||||||
x_axis -- A x-axis whose values correspond to the y_axis list and is used
|
|
||||||
in the return to specify the postion of the peaks.
|
|
||||||
points -- (optional) How many points around the peak should be used during
|
|
||||||
curve fitting, must be odd (default: 9)
|
|
||||||
|
|
||||||
return -- two lists [max_peaks, min_peaks] containing the positive and
|
|
||||||
negative peaks respectively. Each cell of the lists contains a list
|
|
||||||
of: (position, peak_value)
|
|
||||||
to get the average peak value do: np.mean(max_peaks, 0)[1] on the
|
|
||||||
results to unpack one of the lists into x, y coordinates do:
|
|
||||||
x, y = zip(*max_peaks)
|
|
||||||
"""
|
|
||||||
# check input data
|
|
||||||
x_axis, y_axis = _datacheck_peakdetect(x_axis, y_axis)
|
|
||||||
# make the points argument odd
|
|
||||||
points += 1 - points % 2
|
|
||||||
#points += 1 - int(points) & 1 slower when int conversion needed
|
|
||||||
|
|
||||||
# get raw peaks
|
|
||||||
max_raw, min_raw = peakdetect_zero_crossing(y_axis)
|
|
||||||
|
|
||||||
# define output variable
|
|
||||||
max_peaks = []
|
|
||||||
min_peaks = []
|
|
||||||
|
|
||||||
max_ = _peakdetect_parabole_fitter(max_raw, x_axis, y_axis, points)
|
|
||||||
min_ = _peakdetect_parabole_fitter(min_raw, x_axis, y_axis, points)
|
|
||||||
|
|
||||||
max_peaks = map(lambda x: [x[0], x[1]], max_)
|
|
||||||
max_fitted = map(lambda x: x[-1], max_)
|
|
||||||
min_peaks = map(lambda x: [x[0], x[1]], min_)
|
|
||||||
min_fitted = map(lambda x: x[-1], min_)
|
|
||||||
|
|
||||||
|
|
||||||
#pylab.plot(x_axis, y_axis)
|
|
||||||
#pylab.hold(True)
|
|
||||||
#for max_p, max_f in zip(max_peaks, max_fitted):
|
|
||||||
# pylab.plot(max_p[0], max_p[1], 'x')
|
|
||||||
# pylab.plot(max_f[0], max_f[1], 'o', markersize = 2)
|
|
||||||
#for min_p, min_f in zip(min_peaks, min_fitted):
|
|
||||||
# pylab.plot(min_p[0], min_p[1], 'x')
|
|
||||||
# pylab.plot(min_f[0], min_f[1], 'o', markersize = 2)
|
|
||||||
#pylab.show()
|
|
||||||
|
|
||||||
return [max_peaks, min_peaks]
|
|
||||||
|
|
||||||
|
|
||||||
def peakdetect_sine(y_axis, x_axis, points = 9, lock_frequency = False):
|
|
||||||
"""
|
|
||||||
Function for detecting local maximas and minmias in a signal.
|
|
||||||
Discovers peaks by fitting the model function:
|
|
||||||
y = A * sin(2 * pi * f * x - tau) to the peaks. The amount of points used
|
|
||||||
in the fitting is set by the points argument.
|
|
||||||
|
|
||||||
Omitting the x_axis is forbidden as it would make the resulting x_axis
|
|
||||||
value silly if it was returned as index 50.234 or similar.
|
|
||||||
|
|
||||||
will find the same amount of peaks as the 'peakdetect_zero_crossing'
|
|
||||||
function, but might result in a more precise value of the peak.
|
|
||||||
|
|
||||||
The function might have some problems if the sine wave has a
|
|
||||||
non-negligible total angle i.e. a k*x component, as this messes with the
|
|
||||||
internal offset calculation of the peaks, might be fixed by fitting a
|
|
||||||
k * x + m function to the peaks for offset calculation.
|
|
||||||
|
|
||||||
keyword arguments:
|
|
||||||
y_axis -- A list containg the signal over which to find peaks
|
|
||||||
x_axis -- A x-axis whose values correspond to the y_axis list and is used
|
|
||||||
in the return to specify the postion of the peaks.
|
|
||||||
points -- (optional) How many points around the peak should be used during
|
|
||||||
curve fitting, must be odd (default: 9)
|
|
||||||
lock_frequency -- (optional) Specifies if the frequency argument of the
|
|
||||||
model function should be locked to the value calculated from the raw
|
|
||||||
peaks or if optimization process may tinker with it. (default: False)
|
|
||||||
|
|
||||||
return -- two lists [max_peaks, min_peaks] containing the positive and
|
|
||||||
negative peaks respectively. Each cell of the lists contains a tupple
|
|
||||||
of: (position, peak_value)
|
|
||||||
to get the average peak value do: np.mean(max_peaks, 0)[1] on the
|
|
||||||
results to unpack one of the lists into x, y coordinates do:
|
|
||||||
x, y = zip(*tab)
|
|
||||||
"""
|
|
||||||
# check input data
|
|
||||||
x_axis, y_axis = _datacheck_peakdetect(x_axis, y_axis)
|
|
||||||
# make the points argument odd
|
|
||||||
points += 1 - points % 2
|
|
||||||
#points += 1 - int(points) & 1 slower when int conversion needed
|
|
||||||
|
|
||||||
# get raw peaks
|
|
||||||
max_raw, min_raw = peakdetect_zero_crossing(y_axis)
|
|
||||||
|
|
||||||
# define output variable
|
|
||||||
max_peaks = []
|
|
||||||
min_peaks = []
|
|
||||||
|
|
||||||
# get global offset
|
|
||||||
offset = np.mean([np.mean(max_raw, 0)[1], np.mean(min_raw, 0)[1]])
|
|
||||||
# fitting a k * x + m function to the peaks might be better
|
|
||||||
#offset_func = lambda x, k, m: k * x + m
|
|
||||||
|
|
||||||
# calculate an approximate frequenzy of the signal
|
|
||||||
Hz = []
|
|
||||||
for raw in [max_raw, min_raw]:
|
|
||||||
if len(raw) > 1:
|
|
||||||
peak_pos = [x_axis[index] for index in zip(*raw)[0]]
|
|
||||||
Hz.append(np.mean(np.diff(peak_pos)))
|
|
||||||
Hz = 1 / np.mean(Hz)
|
|
||||||
|
|
||||||
# model function
|
|
||||||
# if cosine is used then tau could equal the x position of the peak
|
|
||||||
# if sine were to be used then tau would be the first zero crossing
|
|
||||||
if lock_frequency:
|
|
||||||
func = lambda x, A, tau: A * np.sin(2 * pi * Hz * (x - tau) + pi / 2)
|
|
||||||
else:
|
|
||||||
func = lambda x, A, Hz, tau: A * np.sin(2 * pi * Hz * (x - tau) +
|
|
||||||
pi / 2)
|
|
||||||
#func = lambda x, A, Hz, tau: A * np.cos(2 * pi * Hz * (x - tau))
|
|
||||||
|
|
||||||
|
|
||||||
#get peaks
|
|
||||||
fitted_peaks = []
|
|
||||||
for raw_peaks in [max_raw, min_raw]:
|
|
||||||
peak_data = []
|
|
||||||
for peak in raw_peaks:
|
|
||||||
index = peak[0]
|
|
||||||
x_data = x_axis[index - points // 2: index + points // 2 + 1]
|
|
||||||
y_data = y_axis[index - points // 2: index + points // 2 + 1]
|
|
||||||
# get a first approximation of tau (peak position in time)
|
|
||||||
tau = x_axis[index]
|
|
||||||
# get a first approximation of peak amplitude
|
|
||||||
A = peak[1]
|
|
||||||
|
|
||||||
# build list of approximations
|
|
||||||
if lock_frequency:
|
|
||||||
p0 = (A, tau)
|
|
||||||
else:
|
|
||||||
p0 = (A, Hz, tau)
|
|
||||||
|
|
||||||
# subtract offset from waveshape
|
|
||||||
y_data -= offset
|
|
||||||
popt, pcov = curve_fit(func, x_data, y_data, p0)
|
|
||||||
# retrieve tau and A i.e x and y value of peak
|
|
||||||
x = popt[-1]
|
|
||||||
y = popt[0]
|
|
||||||
|
|
||||||
# create a high resolution data set for the fitted waveform
|
|
||||||
x2 = np.linspace(x_data[0], x_data[-1], points * 10)
|
|
||||||
y2 = func(x2, *popt)
|
|
||||||
|
|
||||||
# add the offset to the results
|
|
||||||
y += offset
|
|
||||||
y2 += offset
|
|
||||||
y_data += offset
|
|
||||||
|
|
||||||
peak_data.append([x, y, [x2, y2]])
|
|
||||||
|
|
||||||
fitted_peaks.append(peak_data)
|
|
||||||
|
|
||||||
# structure date for output
|
|
||||||
max_peaks = map(lambda x: [x[0], x[1]], fitted_peaks[0])
|
|
||||||
max_fitted = map(lambda x: x[-1], fitted_peaks[0])
|
|
||||||
min_peaks = map(lambda x: [x[0], x[1]], fitted_peaks[1])
|
|
||||||
min_fitted = map(lambda x: x[-1], fitted_peaks[1])
|
|
||||||
|
|
||||||
|
|
||||||
#pylab.plot(x_axis, y_axis)
|
|
||||||
#pylab.hold(True)
|
|
||||||
#for max_p, max_f in zip(max_peaks, max_fitted):
|
|
||||||
# pylab.plot(max_p[0], max_p[1], 'x')
|
|
||||||
# pylab.plot(max_f[0], max_f[1], 'o', markersize = 2)
|
|
||||||
#for min_p, min_f in zip(min_peaks, min_fitted):
|
|
||||||
# pylab.plot(min_p[0], min_p[1], 'x')
|
|
||||||
# pylab.plot(min_f[0], min_f[1], 'o', markersize = 2)
|
|
||||||
#pylab.show()
|
|
||||||
|
|
||||||
return [max_peaks, min_peaks]
|
|
||||||
|
|
||||||
|
|
||||||
def peakdetect_sine_locked(y_axis, x_axis, points = 9):
|
|
||||||
"""
|
|
||||||
Convinience function for calling the 'peakdetect_sine' function with
|
|
||||||
the lock_frequency argument as True.
|
|
||||||
|
|
||||||
keyword arguments:
|
|
||||||
y_axis -- A list containg the signal over which to find peaks
|
|
||||||
x_axis -- A x-axis whose values correspond to the y_axis list and is used
|
|
||||||
in the return to specify the postion of the peaks.
|
|
||||||
points -- (optional) How many points around the peak should be used during
|
|
||||||
curve fitting, must be odd (default: 9)
|
|
||||||
|
|
||||||
return -- see 'peakdetect_sine'
|
|
||||||
"""
|
|
||||||
return peakdetect_sine(y_axis, x_axis, points, True)
|
|
||||||
|
|
||||||
|
|
||||||
def peakdetect_zero_crossing(y_axis, x_axis = None, window = 11):
|
|
||||||
"""
|
|
||||||
Function for detecting local maximas and minmias in a signal.
|
|
||||||
Discovers peaks by dividing the signal into bins and retrieving the
|
|
||||||
maximum and minimum value of each the even and odd bins respectively.
|
|
||||||
Division into bins is performed by smoothing the curve and finding the
|
|
||||||
zero crossings.
|
|
||||||
|
|
||||||
Suitable for repeatable signals, where some noise is tolerated. Excecutes
|
|
||||||
faster than 'peakdetect', although this function will break if the offset
|
|
||||||
of the signal is too large. It should also be noted that the first and
|
|
||||||
last peak will probably not be found, as this function only can find peaks
|
|
||||||
between the first and last zero crossing.
|
|
||||||
|
|
||||||
keyword arguments:
|
|
||||||
y_axis -- A list containg the signal over which to find peaks
|
|
||||||
x_axis -- (optional) A x-axis whose values correspond to the y_axis list
|
|
||||||
and is used in the return to specify the postion of the peaks. If
|
|
||||||
omitted an index of the y_axis is used. (default: None)
|
|
||||||
window -- the dimension of the smoothing window; should be an odd integer
|
|
||||||
(default: 11)
|
|
||||||
|
|
||||||
return -- two lists [max_peaks, min_peaks] containing the positive and
|
|
||||||
negative peaks respectively. Each cell of the lists contains a tupple
|
|
||||||
of: (position, peak_value)
|
|
||||||
to get the average peak value do: np.mean(max_peaks, 0)[1] on the
|
|
||||||
results to unpack one of the lists into x, y coordinates do:
|
|
||||||
x, y = zip(*tab)
|
|
||||||
"""
|
|
||||||
# check input data
|
|
||||||
x_axis, y_axis = _datacheck_peakdetect(x_axis, y_axis)
|
|
||||||
|
|
||||||
zero_indices = zero_crossings(y_axis, window = window)
|
|
||||||
period_lengths = np.diff(zero_indices)
|
|
||||||
|
|
||||||
bins_y = [y_axis[index:index + diff] for index, diff in
|
|
||||||
zip(zero_indices, period_lengths)]
|
|
||||||
bins_x = [x_axis[index:index + diff] for index, diff in
|
|
||||||
zip(zero_indices, period_lengths)]
|
|
||||||
|
|
||||||
even_bins_y = bins_y[::2]
|
|
||||||
odd_bins_y = bins_y[1::2]
|
|
||||||
even_bins_x = bins_x[::2]
|
|
||||||
odd_bins_x = bins_x[1::2]
|
|
||||||
hi_peaks_x = []
|
|
||||||
lo_peaks_x = []
|
|
||||||
|
|
||||||
#check if even bin contains maxima
|
|
||||||
if abs(even_bins_y[0].max()) > abs(even_bins_y[0].min()):
|
|
||||||
hi_peaks = [bin.max() for bin in even_bins_y]
|
|
||||||
lo_peaks = [bin.min() for bin in odd_bins_y]
|
|
||||||
# get x values for peak
|
|
||||||
for bin_x, bin_y, peak in zip(even_bins_x, even_bins_y, hi_peaks):
|
|
||||||
hi_peaks_x.append(bin_x[np.where(bin_y==peak)[0][0]])
|
|
||||||
for bin_x, bin_y, peak in zip(odd_bins_x, odd_bins_y, lo_peaks):
|
|
||||||
lo_peaks_x.append(bin_x[np.where(bin_y==peak)[0][0]])
|
|
||||||
else:
|
|
||||||
hi_peaks = [bin.max() for bin in odd_bins_y]
|
|
||||||
lo_peaks = [bin.min() for bin in even_bins_y]
|
|
||||||
# get x values for peak
|
|
||||||
for bin_x, bin_y, peak in zip(odd_bins_x, odd_bins_y, hi_peaks):
|
|
||||||
hi_peaks_x.append(bin_x[np.where(bin_y==peak)[0][0]])
|
|
||||||
for bin_x, bin_y, peak in zip(even_bins_x, even_bins_y, lo_peaks):
|
|
||||||
lo_peaks_x.append(bin_x[np.where(bin_y==peak)[0][0]])
|
|
||||||
|
|
||||||
max_peaks = [[x, y] for x,y in zip(hi_peaks_x, hi_peaks)]
|
|
||||||
min_peaks = [[x, y] for x,y in zip(lo_peaks_x, lo_peaks)]
|
|
||||||
|
|
||||||
return [max_peaks, min_peaks]
|
|
||||||
|
|
||||||
|
|
||||||
def _smooth(x, window_len=11, window='hanning'):
|
|
||||||
"""
|
|
||||||
smooth the data using a window of the requested size.
|
|
||||||
|
|
||||||
This method is based on the convolution of a scaled window on the signal.
|
|
||||||
The signal is prepared by introducing reflected copies of the signal
|
|
||||||
(with the window size) in both ends so that transient parts are minimized
|
|
||||||
in the begining and end part of the output signal.
|
|
||||||
|
|
||||||
input:
|
|
||||||
x: the input signal
|
|
||||||
window_len: the dimension of the smoothing window; should be an odd
|
|
||||||
integer
|
|
||||||
window: the type of window from 'flat', 'hanning', 'hamming',
|
|
||||||
'bartlett', 'blackman'
|
|
||||||
flat window will produce a moving average smoothing.
|
|
||||||
|
|
||||||
output:
|
|
||||||
the smoothed signal
|
|
||||||
|
|
||||||
example:
|
|
||||||
|
|
||||||
t = linspace(-2,2,0.1)
|
|
||||||
x = sin(t)+randn(len(t))*0.1
|
|
||||||
y = _smooth(x)
|
|
||||||
|
|
||||||
see also:
|
|
||||||
|
|
||||||
numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman,
|
|
||||||
numpy.convolve, scipy.signal.lfilter
|
|
||||||
|
|
||||||
TODO: the window parameter could be the window itself if a list instead of
|
|
||||||
a string
|
|
||||||
"""
|
|
||||||
if x.ndim != 1:
|
|
||||||
raise ValueError, "smooth only accepts 1 dimension arrays."
|
|
||||||
|
|
||||||
if x.size < window_len:
|
|
||||||
raise ValueError, "Input vector needs to be bigger than window size."
|
|
||||||
|
|
||||||
if window_len<3:
|
|
||||||
return x
|
|
||||||
|
|
||||||
if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
|
|
||||||
raise(ValueError,
|
|
||||||
"Window is not one of '{0}', '{1}', '{2}', '{3}', '{4}'".format(
|
|
||||||
*('flat', 'hanning', 'hamming', 'bartlett', 'blackman')))
|
|
||||||
|
|
||||||
s = np.r_[x[window_len-1:0:-1], x, x[-1:-window_len:-1]]
|
|
||||||
#print(len(s))
|
|
||||||
if window == 'flat': #moving average
|
|
||||||
w = np.ones(window_len,'d')
|
|
||||||
else:
|
|
||||||
w = eval('np.' + window + '(window_len)')
|
|
||||||
|
|
||||||
y = np.convolve(w / w.sum(), s, mode = 'valid')
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
def zero_crossings(y_axis, window = 11):
|
|
||||||
"""
|
|
||||||
Algorithm to find zero crossings. Smoothens the curve and finds the
|
|
||||||
zero-crossings by looking for a sign change.
|
|
||||||
|
|
||||||
|
|
||||||
keyword arguments:
|
|
||||||
y_axis -- A list containg the signal over which to find zero-crossings
|
|
||||||
window -- the dimension of the smoothing window; should be an odd integer
|
|
||||||
(default: 11)
|
|
||||||
|
|
||||||
return -- the index for each zero-crossing
|
|
||||||
"""
|
|
||||||
# smooth the curve
|
|
||||||
length = len(y_axis)
|
|
||||||
x_axis = np.asarray(range(length), int)
|
|
||||||
|
|
||||||
# discard tail of smoothed signal
|
|
||||||
y_axis = _smooth(y_axis, window)[:length]
|
|
||||||
zero_crossings = np.where(np.diff(np.sign(y_axis)))[0]
|
|
||||||
indices = [x_axis[index] for index in zero_crossings]
|
|
||||||
|
|
||||||
# check if zero-crossings are valid
|
|
||||||
diff = np.diff(indices)
|
|
||||||
if diff.std() / diff.mean() > 0.2:
|
|
||||||
print diff.std() / diff.mean()
|
|
||||||
print np.diff(indices)
|
|
||||||
raise(ValueError,
|
|
||||||
"False zero-crossings found, indicates problem {0} or {1}".format(
|
|
||||||
"with smoothing window", "problem with offset"))
|
|
||||||
# check if any zero crossings were found
|
|
||||||
if len(zero_crossings) < 1:
|
|
||||||
raise(ValueError, "No zero crossings found")
|
|
||||||
|
|
||||||
return indices
|
|
||||||
# used this to test the fft function's sensitivity to spectral leakage
|
|
||||||
#return indices + np.asarray(30 * np.random.randn(len(indices)), int)
|
|
||||||
|
|
||||||
############################Frequency calculation#############################
|
|
||||||
# diff = np.diff(indices)
|
|
||||||
# time_p_period = diff.mean()
|
|
||||||
#
|
|
||||||
# if diff.std() / time_p_period > 0.1:
|
|
||||||
# raise ValueError,
|
|
||||||
# "smoothing window too small, false zero-crossing found"
|
|
||||||
#
|
|
||||||
# #return frequency
|
|
||||||
# return 1.0 / time_p_period
|
|
||||||
##############################################################################
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def _test_zero():
|
|
||||||
_max, _min = peakdetect_zero_crossing(y,x)
|
|
||||||
def _test():
|
|
||||||
_max, _min = peakdetect(y,x, delta=0.30)
|
|
||||||
|
|
||||||
|
|
||||||
def _test_graph():
|
|
||||||
i = 10000
|
|
||||||
x = np.linspace(0,3.7*pi,i)
|
|
||||||
y = (0.3*np.sin(x) + np.sin(1.3 * x) + 0.9 * np.sin(4.2 * x) + 0.06 *
|
|
||||||
np.random.randn(i))
|
|
||||||
y *= -1
|
|
||||||
x = range(i)
|
|
||||||
|
|
||||||
_max, _min = peakdetect(y,x,750, 0.30)
|
|
||||||
xm = [p[0] for p in _max]
|
|
||||||
ym = [p[1] for p in _max]
|
|
||||||
xn = [p[0] for p in _min]
|
|
||||||
yn = [p[1] for p in _min]
|
|
||||||
|
|
||||||
plot = pylab.plot(x,y)
|
|
||||||
pylab.hold(True)
|
|
||||||
pylab.plot(xm, ym, 'r+')
|
|
||||||
pylab.plot(xn, yn, 'g+')
|
|
||||||
|
|
||||||
_max, _min = peak_det_bad.peakdetect(y, 0.7, x)
|
|
||||||
xm = [p[0] for p in _max]
|
|
||||||
ym = [p[1] for p in _max]
|
|
||||||
xn = [p[0] for p in _min]
|
|
||||||
yn = [p[1] for p in _min]
|
|
||||||
pylab.plot(xm, ym, 'y*')
|
|
||||||
pylab.plot(xn, yn, 'k*')
|
|
||||||
pylab.show()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
from math import pi
|
|
||||||
import pylab
|
|
||||||
|
|
||||||
i = 10000
|
|
||||||
x = np.linspace(0,3.7*pi,i)
|
|
||||||
y = (0.3*np.sin(x) + np.sin(1.3 * x) + 0.9 * np.sin(4.2 * x) + 0.06 *
|
|
||||||
np.random.randn(i))
|
|
||||||
y *= -1
|
|
||||||
|
|
||||||
#_max, _min = peakdetect(y, x, 750, 0.30)
|
|
||||||
_max, _min = peakdetect(y, x, lookahead=1000)
|
|
||||||
xm = [p[0] for p in _max]
|
|
||||||
ym = [p[1] for p in _max]
|
|
||||||
xn = [p[0] for p in _min]
|
|
||||||
yn = [p[1] for p in _min]
|
|
||||||
|
|
||||||
plot = pylab.plot(x, y)
|
|
||||||
pylab.hold(True)
|
|
||||||
pylab.plot(xm, ym, 'r+')
|
|
||||||
pylab.plot(xn, yn, 'g+')
|
|
||||||
|
|
||||||
|
|
||||||
pylab.show()
|
|
126
pydsf.py
126
pydsf.py
|
@ -8,10 +8,16 @@ try:
|
||||||
mpl.use('Qt4Agg')
|
mpl.use('Qt4Agg')
|
||||||
import matplotlib.ticker as ticker
|
import matplotlib.ticker as ticker
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import matplotlib.patches as mpatches
|
||||||
except ImportError:
|
except ImportError:
|
||||||
raise ImportError('----- Matplotlib must be installed. -----')
|
raise ImportError('----- Matplotlib must be installed. -----')
|
||||||
|
|
||||||
from peakdetect import *
|
try:
|
||||||
|
import peakutils
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError('----- PeakUtils must be installed. -----')
|
||||||
|
|
||||||
|
#from peakdetect import *
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -35,8 +41,10 @@ class Well:
|
||||||
self.splines = {"raw": None,
|
self.splines = {"raw": None,
|
||||||
"filtered": None,
|
"filtered": None,
|
||||||
"derivative1": None}
|
"derivative1": None}
|
||||||
self.tm = None
|
self.tm = np.NaN
|
||||||
self.tm_sd = None
|
self.tm_sd = np.NaN
|
||||||
|
self.baseline_correction = owner.baseline_correction
|
||||||
|
self.baseline = None
|
||||||
|
|
||||||
def filter_raw(self):
|
def filter_raw(self):
|
||||||
"""
|
"""
|
||||||
|
@ -57,38 +65,51 @@ class Well:
|
||||||
temp = self.splines[spline].derivatives(t)
|
temp = self.splines[spline].derivatives(t)
|
||||||
for i in range(4):
|
for i in range(4):
|
||||||
self.derivatives[i, t - self.owner.t1] = temp[i]
|
self.derivatives[i, t - self.owner.t1] = temp[i]
|
||||||
|
|
||||||
|
def calc_baseline(self, y):
|
||||||
|
try:
|
||||||
|
baseline = peakutils.baseline(y)
|
||||||
|
return baseline
|
||||||
|
except:
|
||||||
|
return np.NaN
|
||||||
|
|
||||||
def calc_tm(self):
|
def calc_tm(self):
|
||||||
"""
|
"""
|
||||||
Calculate the Tm of the well. Returns either the Tm or 'None'.
|
Calculate the Tm of the well. Returns either the Tm or 'np.NaN'.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# Check if the well has already been flagged as denatured
|
# Check if the well has already been flagged as denatured
|
||||||
if self in self.owner.denatured_wells:
|
if self in self.owner.denatured_wells:
|
||||||
return None # Return 'None' if true
|
return np.NaN # Return 'NaN' if true
|
||||||
|
|
||||||
# First assume that the well is denatured
|
# First assume that the well is denatured
|
||||||
self.owner.denatured_wells.append(self)
|
self.owner.denatured_wells.append(self)
|
||||||
|
|
||||||
|
if self.owner.tm_cutoff_low != self.owner.t1 or self.owner.tm_cutoff_high != self.owner.t1:
|
||||||
|
x = np.arange(self.owner.tm_cutoff_low, self.owner.tm_cutoff_high + 1, self.owner.dt, dtype=float)
|
||||||
|
|
||||||
x = self.owner.temprange
|
x = self.owner.temprange
|
||||||
y = self.derivatives[1]
|
y = self.derivatives[1]
|
||||||
lookahead = len(x)/4 # Amount of data points to look around potential peaks to verify
|
|
||||||
|
if self.baseline_correction:
|
||||||
|
y = y - self.baseline
|
||||||
|
|
||||||
try:
|
try:
|
||||||
peaks = peakdetect(y, x, lookahead) # Run peak finding algorithm
|
peak_indexes = peakutils.indexes(y, min_dist=len(x)) # calculate a rough estimate of peaks; set min_dist
|
||||||
|
# temperature range to only find one/the highest peak
|
||||||
|
tm = peakutils.interpolate(x, y, ind=peak_indexes)[0] # increase resolution by fitting gaussian function
|
||||||
|
# to peak
|
||||||
except:
|
except:
|
||||||
return None # In case of error, return no peak
|
return np.NaN # In case of error, return no peak
|
||||||
|
|
||||||
try:
|
try:
|
||||||
for i in peaks[0]: # Iterate over all peaks
|
|
||||||
tm = i[0] # Highest peak found is the first in list
|
|
||||||
# Check if the peak is within cutoff range
|
# Check if the peak is within cutoff range
|
||||||
if tm and tm >= self.owner.tm_cutoff_low and tm <= self.owner.tm_cutoff_high:
|
if tm and tm >= self.owner.tm_cutoff_low and tm <= self.owner.tm_cutoff_high:
|
||||||
self.owner.denatured_wells.remove(self) # If everything is fine, remove the denatured flag
|
self.owner.denatured_wells.remove(self) # If everything is fine, remove the denatured flag
|
||||||
return tm # and return the Tm
|
return tm # and return the Tm
|
||||||
else:
|
else:
|
||||||
return None # otherwise, return no Tm
|
return np.NaN # otherwise, return NaN
|
||||||
except:
|
except:
|
||||||
return None # In case of error, return nothing
|
return np.NaN # In case of error, return NaN
|
||||||
|
|
||||||
def is_denatured(self):
|
def is_denatured(self):
|
||||||
"""
|
"""
|
||||||
|
@ -131,16 +152,19 @@ class Well:
|
||||||
self.splines["filtered"] = self.calc_spline(self.filtered)
|
self.splines["filtered"] = self.calc_spline(self.filtered)
|
||||||
|
|
||||||
self.calc_derivatives()
|
self.calc_derivatives()
|
||||||
|
if self.baseline_correction:
|
||||||
|
self.baseline = self.calc_baseline(self.derivatives[1])
|
||||||
if self.is_denatured():
|
if self.is_denatured():
|
||||||
self.owner.denatured_wells.append(self)
|
self.owner.denatured_wells.append(self)
|
||||||
|
|
||||||
self.splines["derivative1"] = self.calc_spline(self.derivatives[1])
|
self.splines["derivative1"] = self.calc_spline(self.derivatives[1])
|
||||||
|
|
||||||
self.tm = self.calc_tm()
|
self.tm = self.calc_tm()
|
||||||
#print(self.tm)
|
if self.tm is None:
|
||||||
|
self.tm = np.NaN
|
||||||
|
|
||||||
class Experiment:
|
class Experiment:
|
||||||
def __init__(self, type, gui=None, files=None, replicates=None, t1=25, t2=95, dt=1, cols=12, rows=8, cutoff_low=None, cutoff_high=None, signal_threshold=None, color_range=None):
|
def __init__(self, type, gui=None, files=None, replicates=None, t1=25, t2=95, dt=1, cols=12, rows=8, cutoff_low=None, cutoff_high=None, signal_threshold=None, color_range=None, baseline_correction=False):
|
||||||
self.replicates = replicates
|
self.replicates = replicates
|
||||||
self.cols = cols
|
self.cols = cols
|
||||||
self.rows = rows
|
self.rows = rows
|
||||||
|
@ -159,6 +183,7 @@ class Experiment:
|
||||||
self.gui=gui
|
self.gui=gui
|
||||||
self.signal_threshold = signal_threshold
|
self.signal_threshold = signal_threshold
|
||||||
self.avg_plate = None
|
self.avg_plate = None
|
||||||
|
self.baseline_correction=baseline_correction
|
||||||
if cutoff_low:
|
if cutoff_low:
|
||||||
self.tm_cutoff_low = cutoff_low
|
self.tm_cutoff_low = cutoff_low
|
||||||
else:
|
else:
|
||||||
|
@ -176,12 +201,12 @@ class Experiment:
|
||||||
|
|
||||||
i = 1
|
i = 1
|
||||||
for file in files:
|
for file in files:
|
||||||
plate = Plate(type=self.type, filename=file, t1=self.t1, t2=self.t2, dt=self.dt, cols=self.cols, rows=self.rows, cutoff_low=self.tm_cutoff_low, cutoff_high=self.tm_cutoff_high, signal_threshold=self.signal_threshold, color_range=self.color_range)
|
plate = Plate(type=self.type, owner=self, filename=file, t1=self.t1, t2=self.t2, dt=self.dt, cols=self.cols, rows=self.rows, cutoff_low=self.tm_cutoff_low, cutoff_high=self.tm_cutoff_high, signal_threshold=self.signal_threshold, color_range=self.color_range)
|
||||||
plate.id = i
|
plate.id = i
|
||||||
self.plates.append(plate)
|
self.plates.append(plate)
|
||||||
i += 1
|
i += 1
|
||||||
if len(files) > 1:
|
if len(files) > 1:
|
||||||
self.avg_plate = Plate(type=self.type, filename=None, t1=self.t1, t2=self.t2, dt=self.dt, cols=self.cols, rows=self.rows, cutoff_low=self.tm_cutoff_low, cutoff_high=self.tm_cutoff_high, signal_threshold=self.signal_threshold, color_range=self.color_range)
|
self.avg_plate = Plate(type=self.type, owner=self, filename=None, t1=self.t1, t2=self.t2, dt=self.dt, cols=self.cols, rows=self.rows, cutoff_low=self.tm_cutoff_low, cutoff_high=self.tm_cutoff_high, signal_threshold=self.signal_threshold, color_range=self.color_range)
|
||||||
self.avg_plate.id = 'average'
|
self.avg_plate.id = 'average'
|
||||||
|
|
||||||
def analyze(self):
|
def analyze(self):
|
||||||
|
@ -211,12 +236,22 @@ class Experiment:
|
||||||
|
|
||||||
|
|
||||||
class Plate:
|
class Plate:
|
||||||
def __init__(self, type, id=None, filename=None, replicates=None, t1=25, t2=95, dt=1, cols=12, rows=8, cutoff_low=None, cutoff_high=None, signal_threshold=None, color_range=None):
|
def __init__(self, type, owner, id=None, filename=None, replicates=None, t1=None, t2=None, dt=None, cols=12, rows=8, cutoff_low=None, cutoff_high=None, signal_threshold=None, color_range=None):
|
||||||
self.cols = cols
|
self.cols = cols
|
||||||
self.rows = rows
|
self.rows = rows
|
||||||
self.t1 = t1
|
self.owner = owner
|
||||||
self.t2 = t2
|
if t1:
|
||||||
self.dt = dt
|
self.t1 = t1
|
||||||
|
else:
|
||||||
|
self.t1 = owner.t1
|
||||||
|
if t1:
|
||||||
|
self.t2 = t2
|
||||||
|
else:
|
||||||
|
self.t2 = owner.t2
|
||||||
|
if t1:
|
||||||
|
self.dt = dt
|
||||||
|
else:
|
||||||
|
self.dt = owner.dt
|
||||||
self.temprange = np.arange(self.t1, self.t2 + 1, self.dt, dtype=float)
|
self.temprange = np.arange(self.t1, self.t2 + 1, self.dt, dtype=float)
|
||||||
self.reads = int(round((t2 + 1 - t1) / dt))
|
self.reads = int(round((t2 + 1 - t1) / dt))
|
||||||
self.wellnum = self.cols * self.rows
|
self.wellnum = self.cols * self.rows
|
||||||
|
@ -228,6 +263,7 @@ class Plate:
|
||||||
self.replicates = None
|
self.replicates = None
|
||||||
self.signal_threshold = signal_threshold
|
self.signal_threshold = signal_threshold
|
||||||
self.id = id
|
self.id = id
|
||||||
|
self.baseline_correction = owner.baseline_correction
|
||||||
if cutoff_low:
|
if cutoff_low:
|
||||||
self.tm_cutoff_low = cutoff_low
|
self.tm_cutoff_low = cutoff_low
|
||||||
else:
|
else:
|
||||||
|
@ -271,7 +307,7 @@ class Plate:
|
||||||
self.wells[i].name = row[read]
|
self.wells[i].name = row[read]
|
||||||
self.wells[i].raw = temp
|
self.wells[i].raw = temp
|
||||||
i += 1
|
i += 1
|
||||||
|
|
||||||
def analyze(self, gui=None):
|
def analyze(self, gui=None):
|
||||||
try:
|
try:
|
||||||
# Try to access data file in the given path
|
# Try to access data file in the given path
|
||||||
|
@ -298,10 +334,10 @@ class Plate:
|
||||||
|
|
||||||
if self.replicates:
|
if self.replicates:
|
||||||
if self.replicates == 'rows':
|
if self.replicates == 'rows':
|
||||||
print "rows"
|
print("rows")
|
||||||
if self.replicates == 'cols':
|
if self.replicates == 'cols':
|
||||||
print "cols"
|
print("cols")
|
||||||
|
#print(self.tms)
|
||||||
self.max_tm = max(self.tms)
|
self.max_tm = max(self.tms)
|
||||||
self.min_tm = min(self.tms)
|
self.min_tm = min(self.tms)
|
||||||
|
|
||||||
|
@ -309,7 +345,7 @@ class Plate:
|
||||||
with open(filename, 'w') as f:
|
with open(filename, 'w') as f:
|
||||||
f.write('#{:<4s}{:>13s}\n'.format('ID', '"Tm [°C]"'))
|
f.write('#{:<4s}{:>13s}\n'.format('ID', '"Tm [°C]"'))
|
||||||
for well in self.wells:
|
for well in self.wells:
|
||||||
if well.tm == None or well in self.denatured_wells:
|
if np.isnan(well.tm) or well in self.denatured_wells:
|
||||||
f.write('{:<5s}{:>12s}\n'.format(well.name, 'NaN'))
|
f.write('{:<5s}{:>12s}\n'.format(well.name, 'NaN'))
|
||||||
else:
|
else:
|
||||||
f.write('{:<5s}{:>12s}\n'.format(well.name, str(well.tm)))
|
f.write('{:<5s}{:>12s}\n'.format(well.name, str(well.tm)))
|
||||||
|
@ -318,7 +354,7 @@ class Plate:
|
||||||
with open(filename, 'w') as f:
|
with open(filename, 'w') as f:
|
||||||
f.write('#{:<4s}{:>13s}{:>13s}\n'.format('"ID"', '"Tm [°C]"', '"SD"'))
|
f.write('#{:<4s}{:>13s}{:>13s}\n'.format('"ID"', '"Tm [°C]"', '"SD"'))
|
||||||
for well in self.wells:
|
for well in self.wells:
|
||||||
if well.tm == None or well in self.denatured_wells:
|
if np.isnan(well.tm) or well in self.denatured_wells:
|
||||||
f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name, 'NaN', 'NaN'))
|
f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name, 'NaN', 'NaN'))
|
||||||
else:
|
else:
|
||||||
f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name, str(well.tm), str(well.tm_sd)))
|
f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name, str(well.tm), str(well.tm_sd)))
|
||||||
|
@ -373,6 +409,11 @@ class Plate:
|
||||||
f.write('{:>-15.3f}'.format(float(np.round(d, decimals=3))))
|
f.write('{:>-15.3f}'.format(float(np.round(d, decimals=3))))
|
||||||
f.write('\n')
|
f.write('\n')
|
||||||
i += 1
|
i += 1
|
||||||
|
|
||||||
|
# TODO: Implement 'write_baseline_corrected_table()
|
||||||
|
|
||||||
|
def write_baseline_corrected_table(self, filename):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
def update_progress_bar(bar, value):
|
def update_progress_bar(bar, value):
|
||||||
|
@ -431,6 +472,9 @@ def plot_tm_heatmap_single(plate, gui=None):
|
||||||
x_values = [] # Array holding the columns
|
x_values = [] # Array holding the columns
|
||||||
y_values = [] # Array holding the rows
|
y_values = [] # Array holding the rows
|
||||||
c_values = [] # Array holding the color values aka Tm
|
c_values = [] # Array holding the color values aka Tm
|
||||||
|
dx_values = []
|
||||||
|
dy_values = []
|
||||||
|
dc_values = []
|
||||||
for well in plate.wells: # Iterate over all wells
|
for well in plate.wells: # Iterate over all wells
|
||||||
if well not in plate.denatured_wells: # Check if well is denatured (no Tm found)
|
if well not in plate.denatured_wells: # Check if well is denatured (no Tm found)
|
||||||
c = well.tm # If not, set color to Tm
|
c = well.tm # If not, set color to Tm
|
||||||
|
@ -440,6 +484,8 @@ def plot_tm_heatmap_single(plate, gui=None):
|
||||||
c = plate.tm_cutoff_high # If it is, set color to cutoff
|
c = plate.tm_cutoff_high # If it is, set color to cutoff
|
||||||
else: # If the plate is denatured
|
else: # If the plate is denatured
|
||||||
c = plate.tm_cutoff_low # Set its color to the low cutoff
|
c = plate.tm_cutoff_low # Set its color to the low cutoff
|
||||||
|
dx_values.append(x)
|
||||||
|
dy_values.append(y)
|
||||||
x_values.append(x) # Add values to the respective arrays
|
x_values.append(x) # Add values to the respective arrays
|
||||||
y_values.append(y)
|
y_values.append(y)
|
||||||
c_values.append(c)
|
c_values.append(c)
|
||||||
|
@ -448,25 +494,31 @@ def plot_tm_heatmap_single(plate, gui=None):
|
||||||
x = 1 # reset column to one
|
x = 1 # reset column to one
|
||||||
y += 1 # and increase row by one
|
y += 1 # and increase row by one
|
||||||
|
|
||||||
fig1 = plt.figure() # new figure
|
fig1 = plt.figure() # new figure
|
||||||
ax1 = fig1.add_subplot(1, 1, 1) # A single canvas
|
ax1 = fig1.add_subplot(1, 1, 1) # A single canvas
|
||||||
ax1.autoscale(tight=True) # Scale plate size
|
ax1.autoscale(tight=True) # Scale plate size
|
||||||
ax1.xaxis.set_major_locator(ticker.MaxNLocator(plate.cols + 1)) # n columns
|
ax1.xaxis.set_major_locator(ticker.MaxNLocator(plate.cols + 1)) # n columns
|
||||||
ax1.yaxis.set_major_locator(ticker.MaxNLocator(plate.rows + 1)) # n rows
|
ax1.yaxis.set_major_locator(ticker.MaxNLocator(plate.rows + 1)) # n rows
|
||||||
if plate.color_range:
|
if plate.color_range:
|
||||||
cax = ax1.scatter(x_values, y_values, s=300, c=c_values, marker='s', vmin=plate.color_range[0], vmax=plate.color_range[1]) # plot wells and color using the colormap
|
cax = ax1.scatter(x_values, y_values, s=305, c=c_values, marker='s', vmin=plate.color_range[0], vmax=plate.color_range[1]) # plot wells and color using the colormap
|
||||||
else:
|
else:
|
||||||
cax = ax1.scatter(x_values, y_values, s=300, c=c_values, marker='s') # plot wells and color using the colormap
|
cax = ax1.scatter(x_values, y_values, s=305, c=c_values, marker='s') # plot wells and color using the colormap
|
||||||
|
|
||||||
|
cax2 = ax1.scatter(dx_values, dy_values, s=80, c='white', marker='x', linewidths=(1.5,))
|
||||||
ax1.invert_yaxis() # invert y axis to math plate layout
|
ax1.invert_yaxis() # invert y axis to math plate layout
|
||||||
cbar = fig1.colorbar(cax) # show colorbar
|
cbar = fig1.colorbar(cax) # show colorbar
|
||||||
ax1.set_xlabel('Columns') # set axis and colorbar label
|
ax1.set_xlabel('Columns') # set axis and colorbar label
|
||||||
ax1.set_ylabel('Rows')
|
ax1.set_ylabel('Rows')
|
||||||
|
|
||||||
if str(plate.id) == 'average':
|
if str(plate.id) == 'average':
|
||||||
title = '$T_m$ heatmap (average)'
|
title = '$T_m$ heatmap (average)'
|
||||||
else:
|
else:
|
||||||
title = '$T_m$ heatmap (plate #{})'.format(str(plate.id))
|
title = '$T_m$ heatmap (plate #{})'.format(str(plate.id))
|
||||||
ax1.set_title(title)
|
ax1.set_title(title)
|
||||||
cbar.set_label(u"Temperature [°C]")
|
cbar.set_label(u"Temperature [°C]")
|
||||||
|
|
||||||
|
#magenta_patch = mpatches.Patch(color='magenta', label='Denatured')
|
||||||
|
#fig1.legend([magenta_patch], 'Denatured', loc='lower right', bbox_to_anchor=[0.5, 0.5])
|
||||||
|
|
||||||
# if gui:
|
# if gui:
|
||||||
# update_progress_bar(gui.pb, 50)
|
# update_progress_bar(gui.pb, 50)
|
||||||
|
@ -492,14 +544,18 @@ def plot_derivative(plate, gui=None):
|
||||||
ax.set_ylabel('dI/dT', size='xx-small')
|
ax.set_ylabel('dI/dT', size='xx-small')
|
||||||
|
|
||||||
x = plate.temprange # set values for the x axis to the given temperature range
|
x = plate.temprange # set values for the x axis to the given temperature range
|
||||||
y = well.derivatives[1] # grab y values from the first derivative of the well
|
if well.baseline_correction:
|
||||||
|
print(well.baseline)
|
||||||
|
y = well.derivatives[1] - well.baseline
|
||||||
|
else:
|
||||||
|
y = well.derivatives[1] # grab y values from the first derivative of the well
|
||||||
|
|
||||||
ax.xaxis.set_major_locator(ticker.MaxNLocator(4)) # only show three tickmarks on both axes
|
ax.xaxis.set_major_locator(ticker.MaxNLocator(4)) # only show three tickmarks on both axes
|
||||||
ax.yaxis.set_major_locator(ticker.MaxNLocator(4))
|
ax.yaxis.set_major_locator(ticker.MaxNLocator(4))
|
||||||
if well not in plate.denatured_wells: # check if well is denatured (without determined Tm)
|
if well not in plate.denatured_wells: # check if well is denatured (without determined Tm)
|
||||||
tm = well.tm # if not, grab its Tm
|
tm = well.tm # if not, grab its Tm
|
||||||
else:
|
else:
|
||||||
tm = None # else set Tm to None
|
tm = np.NaN # else set Tm to np.NaN
|
||||||
if tm:
|
if tm:
|
||||||
ax.axvline(x=tm) # plot vertical line at the Tm
|
ax.axvline(x=tm) # plot vertical line at the Tm
|
||||||
ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8', alpha=0.5) # shade lower cutoff area
|
ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8', alpha=0.5) # shade lower cutoff area
|
||||||
|
|
|
@ -258,7 +258,7 @@ class Ui_MainWindow(object):
|
||||||
self.actionAbout.setText(QtGui.QApplication.translate("MainWindow", "About", None, QtGui.QApplication.UnicodeUTF8))
|
self.actionAbout.setText(QtGui.QApplication.translate("MainWindow", "About", None, QtGui.QApplication.UnicodeUTF8))
|
||||||
self.actionAbout_Qt.setText(QtGui.QApplication.translate("MainWindow", "About Qt", None, QtGui.QApplication.UnicodeUTF8))
|
self.actionAbout_Qt.setText(QtGui.QApplication.translate("MainWindow", "About Qt", None, QtGui.QApplication.UnicodeUTF8))
|
||||||
|
|
||||||
import icons_rc
|
#import icons_rc
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
import sys
|
import sys
|
||||||
|
|
BIN
ui/__pycache__/Ui_mainwindow.cpython-34.pyc
Normal file
BIN
ui/__pycache__/Ui_mainwindow.cpython-34.pyc
Normal file
Binary file not shown.
BIN
ui/__pycache__/__init__.cpython-34.pyc
Normal file
BIN
ui/__pycache__/__init__.cpython-34.pyc
Normal file
Binary file not shown.
BIN
ui/__pycache__/mainwindow.cpython-34.pyc
Normal file
BIN
ui/__pycache__/mainwindow.cpython-34.pyc
Normal file
Binary file not shown.
|
@ -80,7 +80,7 @@ class MainWindow(QMainWindow, Ui_MainWindow):
|
||||||
if self.groupBox_signal_threshold.isChecked():
|
if self.groupBox_signal_threshold.isChecked():
|
||||||
signal_threshold = self.spinBox_signal_threshold.value()
|
signal_threshold = self.spinBox_signal_threshold.value()
|
||||||
|
|
||||||
items = (self.listWidget_data.item(i) for i in xrange(self.listWidget_data.count()))
|
items = (self.listWidget_data.item(i) for i in range(self.listWidget_data.count()))
|
||||||
|
|
||||||
files = []
|
files = []
|
||||||
for item in items:
|
for item in items:
|
||||||
|
|
Loading…
Add table
Reference in a new issue