mirror of
https://github.com/Athemis/PyDSF.git
synced 2025-04-05 06:36:04 +00:00
605 lines
23 KiB
Python
605 lines
23 KiB
Python
#! /usr/bin/env python2
|
|
# -*- coding: utf-8 -*-
|
|
import csv
|
|
import multiprocessing as mp
|
|
|
|
try:
|
|
import matplotlib as mpl
|
|
|
|
mpl.use('Qt5Agg')
|
|
import matplotlib.ticker as ticker
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.patches as mpatches
|
|
except ImportError:
|
|
raise ImportError('----- Matplotlib must be installed. -----')
|
|
|
|
try:
|
|
import peakutils
|
|
except ImportError:
|
|
raise ImportError('----- PeakUtils must be installed. -----')
|
|
|
|
try:
|
|
import numpy as np
|
|
except ImportError:
|
|
raise ImportError('----- NumPy must be installed. -----')
|
|
|
|
try:
|
|
from scipy.signal import filtfilt, butter
|
|
from scipy import interpolate
|
|
from scipy import optimize
|
|
except ImportError:
|
|
raise ImportError('----- SciPy must be installed. -----')
|
|
|
|
|
|
class Well:
|
|
def __init__(self, owner):
|
|
self.owner = owner
|
|
self.name = None
|
|
self.raw = np.zeros(self.owner.reads, dtype=np.float)
|
|
self.filtered = np.zeros(self.owner.reads, dtype=np.float)
|
|
self.derivatives = np.zeros((4, self.owner.reads))
|
|
self.splines = {"raw": None,
|
|
"filtered": None,
|
|
"derivative1": None}
|
|
self.tm = np.NaN
|
|
self.tm_sd = np.NaN
|
|
self.baseline_correction = owner.baseline_correction
|
|
self.baseline = None
|
|
|
|
def filter_raw(self):
|
|
"""
|
|
Apply a filter to the raw data
|
|
"""
|
|
b, a = butter(3, 0.3)
|
|
self.filtered = filtfilt(b, a, self.raw)
|
|
|
|
def calc_spline(self, y):
|
|
"""
|
|
Calculate a spline that represents the smoothed data points
|
|
"""
|
|
spline = interpolate.InterpolatedUnivariateSpline(self.owner.temprange, y)
|
|
return spline
|
|
|
|
def calc_derivatives(self, spline='filtered'):
|
|
for t in self.owner.temprange:
|
|
temp = self.splines[spline].derivatives(t)
|
|
for i in range(4):
|
|
self.derivatives[i, t - self.owner.t1] = temp[i]
|
|
|
|
@staticmethod
|
|
def calc_baseline(y):
|
|
try:
|
|
baseline = peakutils.baseline(y)
|
|
return baseline
|
|
except:
|
|
return np.NaN
|
|
|
|
def calc_tm(self):
|
|
"""
|
|
Calculate the Tm of the well. Returns either the Tm or 'np.NaN'.
|
|
"""
|
|
# Check if the well has already been flagged as denatured
|
|
if self in self.owner.denatured_wells:
|
|
return np.NaN # Return 'NaN' if true
|
|
|
|
# First assume that the well is denatured
|
|
self.owner.denatured_wells.append(self)
|
|
|
|
if self.owner.tm_cutoff_low != self.owner.t1 or self.owner.tm_cutoff_high != self.owner.t1:
|
|
x = np.arange(self.owner.tm_cutoff_low, self.owner.tm_cutoff_high + 1, self.owner.dt, dtype=float)
|
|
|
|
x = self.owner.temprange
|
|
y = self.derivatives[1]
|
|
|
|
if self.baseline_correction:
|
|
y = y - self.baseline
|
|
|
|
try:
|
|
peak_indexes = peakutils.indexes(y, min_dist=len(x)) # calculate a rough estimate of peaks; set min_dist
|
|
# temperature range to only find one/the highest peak
|
|
tm = peakutils.interpolate(x, y, ind=peak_indexes)[0] # increase resolution by fitting gaussian function
|
|
# to peak
|
|
except:
|
|
return np.NaN # In case of error, return no peak
|
|
|
|
try:
|
|
# Check if the peak is within cutoff range
|
|
if tm and tm >= self.owner.tm_cutoff_low and tm <= self.owner.tm_cutoff_high:
|
|
self.owner.denatured_wells.remove(self) # If everything is fine, remove the denatured flag
|
|
return tm # and return the Tm
|
|
else:
|
|
return np.NaN # otherwise, return NaN
|
|
except:
|
|
return np.NaN # In case of error, return NaN
|
|
|
|
def is_denatured(self):
|
|
"""
|
|
Check if the well is denatured. Returns true if the well has been already flagged as
|
|
denatured, no Tm was found, or if the initial signal intensity is above a user definded
|
|
threshold.
|
|
"""
|
|
denatured = True # Assumption is that the well is denatured
|
|
|
|
if self in self.owner.denatured_wells: # check if the well is already flagged as denatured
|
|
return denatured # return true if it is
|
|
|
|
if self.tm and (self.tm <= self.owner.tm_cutoff_low or self.tm >= self.owner.tm_cutoff_high):
|
|
denatured = True
|
|
return denatured
|
|
|
|
for i in self.derivatives[1]: # Iterate over all points in the first derivative
|
|
if i > 0: # If a positive slope is found
|
|
denatured = False # set denatured flag to False
|
|
|
|
reads = int(round(self.owner.reads / 10)) # How many values should be checked against the signal threshold:
|
|
# 1/10 of the total number of data point
|
|
read = 0 # Initialize running variable representing the current data point
|
|
|
|
if not denatured:
|
|
for j in self.filtered: # Iterate over the filtered data
|
|
if self.owner.signal_threshold: # If a signal threshold was defined
|
|
if j > self.owner.signal_threshold and read <= reads: # iterate over 1/10 of all data points
|
|
# and check for values larger than the threshold.
|
|
denatured = True # Set flag to True if a match is found
|
|
print("{}: {}".format(self.name, j))
|
|
return denatured # and return
|
|
read += 1
|
|
|
|
return denatured
|
|
|
|
def analyze(self):
|
|
self.filter_raw()
|
|
self.splines["raw"] = self.calc_spline(self.raw)
|
|
self.splines["filtered"] = self.calc_spline(self.filtered)
|
|
|
|
self.calc_derivatives()
|
|
if self.baseline_correction:
|
|
self.baseline = self.calc_baseline(self.derivatives[1])
|
|
if self.is_denatured():
|
|
self.owner.denatured_wells.append(self)
|
|
|
|
self.splines["derivative1"] = self.calc_spline(self.derivatives[1])
|
|
|
|
self.tm = self.calc_tm()
|
|
if self.tm is None:
|
|
self.tm = np.NaN
|
|
|
|
|
|
class Experiment:
|
|
def __init__(self, type, gui=None, files=None, replicates=None, t1=25, t2=95, dt=1, cols=12, rows=8,
|
|
cutoff_low=None, cutoff_high=None, signal_threshold=None, color_range=None, baseline_correction=False):
|
|
self.replicates = replicates
|
|
self.cols = cols
|
|
self.rows = rows
|
|
self.t1 = t1
|
|
self.t2 = t2
|
|
self.dt = dt
|
|
self.temprange = np.arange(self.t1, self.t2 + 1, self.dt, dtype=float)
|
|
self.reads = int(round((t2 + 1 - t1) / dt))
|
|
self.wellnum = self.cols * self.rows
|
|
self.files = files
|
|
self.type = type
|
|
self.wells = []
|
|
self.max_tm = None
|
|
self.min_tm = None
|
|
self.replicates = None
|
|
self.gui = gui
|
|
self.signal_threshold = signal_threshold
|
|
self.avg_plate = None
|
|
self.baseline_correction = baseline_correction
|
|
if cutoff_low:
|
|
self.tm_cutoff_low = cutoff_low
|
|
else:
|
|
self.tm_cutoff_low = self.t1
|
|
if cutoff_high:
|
|
self.tm_cutoff_high = cutoff_high
|
|
else:
|
|
self.tm_cutoff_high = self.t2
|
|
if color_range:
|
|
self.color_range = color_range
|
|
else:
|
|
self.color_range = None
|
|
|
|
self.plates = []
|
|
|
|
i = 1
|
|
for file in files:
|
|
plate = Plate(type=self.type, owner=self, filename=file, t1=self.t1, t2=self.t2, dt=self.dt, cols=self.cols,
|
|
rows=self.rows, cutoff_low=self.tm_cutoff_low, cutoff_high=self.tm_cutoff_high,
|
|
signal_threshold=self.signal_threshold, color_range=self.color_range)
|
|
plate.id = i
|
|
self.plates.append(plate)
|
|
i += 1
|
|
if len(files) > 1:
|
|
self.avg_plate = Plate(type=self.type, owner=self, filename=None, t1=self.t1, t2=self.t2, dt=self.dt,
|
|
cols=self.cols, rows=self.rows, cutoff_low=self.tm_cutoff_low,
|
|
cutoff_high=self.tm_cutoff_high, signal_threshold=self.signal_threshold,
|
|
color_range=self.color_range)
|
|
self.avg_plate.id = 'average'
|
|
|
|
def analyze(self):
|
|
for plate in self.plates:
|
|
plate.analyze(gui=self.gui)
|
|
|
|
if len(self.plates) > 1:
|
|
|
|
# self.tm_replicates = np.zeros( self.wellnum, dtype=float )
|
|
# self.tm_replicates_sd = np.zeros( self.wellnum, dtype=float )
|
|
|
|
|
|
for i in range(self.wellnum):
|
|
tmp = []
|
|
for plate in self.plates:
|
|
tm = plate.wells[i].tm
|
|
self.avg_plate.wells[i].name = plate.wells[i].name
|
|
if plate.wells[i] not in plate.denatured_wells:
|
|
tmp.append(tm)
|
|
if len(tmp) > 0:
|
|
# self.avg_plate.wells[i].tm = (sum(tmp)/len(tmp))
|
|
self.avg_plate.wells[i].tm = np.mean(tmp)
|
|
self.avg_plate.wells[i].tm_sd = np.std(tmp)
|
|
# self.tm_replicates[i] = (sum(tmp)/len(tmp))
|
|
else:
|
|
self.avg_plate.denatured_wells.append(self.avg_plate.wells[i])
|
|
|
|
|
|
class Plate:
|
|
def __init__(self, type, owner, id=None, filename=None, replicates=None, t1=None, t2=None, dt=None, cols=12, rows=8,
|
|
cutoff_low=None, cutoff_high=None, signal_threshold=None, color_range=None):
|
|
self.cols = cols
|
|
self.rows = rows
|
|
self.owner = owner
|
|
if t1:
|
|
self.t1 = t1
|
|
else:
|
|
self.t1 = owner.t1
|
|
if t1:
|
|
self.t2 = t2
|
|
else:
|
|
self.t2 = owner.t2
|
|
if t1:
|
|
self.dt = dt
|
|
else:
|
|
self.dt = owner.dt
|
|
self.temprange = np.arange(self.t1, self.t2 + 1, self.dt, dtype=float)
|
|
self.reads = int(round((t2 + 1 - t1) / dt))
|
|
self.wellnum = self.cols * self.rows
|
|
self.filename = filename
|
|
self.type = type
|
|
self.wells = []
|
|
self.max_tm = None
|
|
self.min_tm = None
|
|
self.replicates = None
|
|
self.signal_threshold = signal_threshold
|
|
self.id = id
|
|
self.baseline_correction = owner.baseline_correction
|
|
if cutoff_low:
|
|
self.tm_cutoff_low = cutoff_low
|
|
else:
|
|
self.tm_cutoff_low = self.t1
|
|
if cutoff_high:
|
|
self.tm_cutoff_high = cutoff_high
|
|
else:
|
|
self.tm_cutoff_high = self.t2
|
|
if color_range:
|
|
self.color_range = color_range
|
|
else:
|
|
self.color_range = None
|
|
|
|
self.denatured_wells = []
|
|
self.tms = []
|
|
|
|
for i in range(self.wellnum):
|
|
well = Well(owner=self)
|
|
self.wells.append(well)
|
|
|
|
|
|
def analytikJena(self):
|
|
"""
|
|
Data processing for Analytik Jena qTower 2.0 export files
|
|
"""
|
|
with open(self.filename, 'r') as f:
|
|
reader = csv.reader(f, delimiter=';', quoting=csv.QUOTE_NONE)
|
|
|
|
i = 0
|
|
for row in reader:
|
|
temp = np.zeros(self.reads, dtype=float)
|
|
for read in range(self.reads + 1):
|
|
if read > 0:
|
|
try:
|
|
temp[read - 1] = row[read]
|
|
except:
|
|
temp[read - 1] = 0.0
|
|
elif read == 0:
|
|
self.wells[i].name = row[read]
|
|
self.wells[i].raw = temp
|
|
i += 1
|
|
|
|
def analyze(self, gui=None):
|
|
try:
|
|
# Try to access data file in the given path
|
|
with open(self.filename) as f:
|
|
pass
|
|
except IOError as e:
|
|
# If the file is not found, or not accessible: abort
|
|
print('Error accessing file: {}'.format(e))
|
|
|
|
if self.type == 'Analytik Jena qTOWER 2.0/2.2':
|
|
self.analytikJena()
|
|
if gui:
|
|
update_progress_bar(gui.pb, 1)
|
|
else:
|
|
# Raise exception, if the instrument's name is unknown
|
|
raise NameError('Unknown instrument type: {}'.format(self.type))
|
|
|
|
for well in self.wells:
|
|
well.analyze()
|
|
if gui:
|
|
update_progress_bar(gui.pb, 15)
|
|
|
|
self.tms.append(well.tm)
|
|
|
|
if self.replicates:
|
|
if self.replicates == 'rows':
|
|
print("rows")
|
|
if self.replicates == 'cols':
|
|
print("cols")
|
|
# print(self.tms)
|
|
self.max_tm = max(self.tms)
|
|
self.min_tm = min(self.tms)
|
|
|
|
def write_tm_table(self, filename):
|
|
with open(filename, 'w') as f:
|
|
f.write('#{:<4s}{:>13s}\n'.format('ID', '"Tm [°C]"'))
|
|
for well in self.wells:
|
|
if np.isnan(well.tm) or well in self.denatured_wells:
|
|
f.write('{:<5s}{:>12s}\n'.format(well.name, 'NaN'))
|
|
else:
|
|
f.write('{:<5s}{:>12s}\n'.format(well.name, str(well.tm)))
|
|
|
|
def write_avg_tm_table(self, filename):
|
|
with open(filename, 'w') as f:
|
|
f.write('#{:<4s}{:>13s}{:>13s}\n'.format('"ID"', '"Tm [°C]"', '"SD"'))
|
|
for well in self.wells:
|
|
if np.isnan(well.tm) or well in self.denatured_wells:
|
|
f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name, 'NaN', 'NaN'))
|
|
else:
|
|
f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name, str(well.tm), str(well.tm_sd)))
|
|
|
|
def write_raw_table(self, filename):
|
|
with open(filename, 'w') as f:
|
|
f.write('#"Raw data"\n')
|
|
f.write('#{:<10s}'.format('"T [°C]"'))
|
|
for well in self.wells:
|
|
f.write('{:>15s}'.format(well.name))
|
|
f.write('\n')
|
|
|
|
i = 0
|
|
for t in self.temprange:
|
|
f.write('{:<10s}'.format(str(t)))
|
|
for well in self.wells:
|
|
d = well.raw[i]
|
|
f.write('{:>-15.3f}'.format(float(np.round(d, decimals=3))))
|
|
f.write('\n')
|
|
i += 1
|
|
|
|
def write_filtered_table(self, filename):
|
|
with open(filename, 'w') as f:
|
|
f.write('#"Filtered data" \n')
|
|
f.write('#{:<10s}'.format('"T [°C]"'))
|
|
for well in self.wells:
|
|
f.write('{:>15s}'.format(well.name))
|
|
f.write('\n')
|
|
|
|
i = 0
|
|
for t in self.temprange:
|
|
f.write('{:<10s}'.format(str(t)))
|
|
for well in self.wells:
|
|
d = well.filtered[i]
|
|
f.write('{:>-15.3f}'.format(float(np.round(d, decimals=3))))
|
|
f.write('\n')
|
|
i += 1
|
|
|
|
def write_derivative_table(self, filename):
|
|
with open(filename, 'w') as f:
|
|
f.write('#"Derivative dI/dT"\n')
|
|
f.write('#{:<10s}'.format('"T [°C]"'))
|
|
for well in self.wells:
|
|
f.write('{:>15s}'.format(well.name))
|
|
f.write('\n')
|
|
|
|
i = 0
|
|
for t in self.temprange:
|
|
f.write('{:<10s}'.format(str(t)))
|
|
for well in self.wells:
|
|
d = well.derivatives[1][i]
|
|
f.write('{:>-15.3f}'.format(float(np.round(d, decimals=3))))
|
|
f.write('\n')
|
|
i += 1
|
|
|
|
# TODO: Implement 'write_baseline_corrected_table()
|
|
|
|
def write_baseline_corrected_table(self, filename):
|
|
raise NotImplementedError
|
|
|
|
|
|
def update_progress_bar(bar, value):
|
|
bar.setValue(value)
|
|
|
|
class PlotResults():
|
|
|
|
def __init__(self, experiment):
|
|
self.experiment = experiment
|
|
|
|
def plot_tm_heatmap_single(self, plate, widget):
|
|
"""
|
|
Plot Tm heatmap (Fig. 1)
|
|
"""
|
|
x = 1 # Position in columns
|
|
y = 1 # Position in rows
|
|
x_values = [] # Array holding the columns
|
|
y_values = [] # Array holding the rows
|
|
c_values = [] # Array holding the color values aka Tm
|
|
dx_values = []
|
|
dy_values = []
|
|
dc_values = []
|
|
canvas = widget.canvas
|
|
canvas.clear()
|
|
for well in plate.wells: # Iterate over all wells
|
|
if well not in plate.denatured_wells: # Check if well is denatured (no Tm found)
|
|
c = well.tm # If not, set color to Tm
|
|
if c < plate.tm_cutoff_low: # Check if Tm is lower that the cutoff
|
|
c = plate.tm_cutoff_low # If it is, set color to cutoff
|
|
elif c > plate.tm_cutoff_high: # Check if Tm is higher that the cutoff
|
|
c = plate.tm_cutoff_high # If it is, set color to cutoff
|
|
else: # If the plate is denatured
|
|
c = plate.tm_cutoff_low # Set its color to the low cutoff
|
|
dx_values.append(x)
|
|
dy_values.append(y)
|
|
x_values.append(x) # Add values to the respective arrays
|
|
y_values.append(y)
|
|
c_values.append(c)
|
|
x += 1 # Increase column by one
|
|
if x > plate.cols: # If maximum column per row is reached
|
|
x = 1 # reset column to one
|
|
y += 1 # and increase row by one
|
|
|
|
fig1 = canvas.fig # new figure
|
|
ax1 = fig1.add_subplot(1, 1, 1) # A single canvas
|
|
ax1.autoscale(tight=True) # Scale plate size
|
|
ax1.xaxis.set_major_locator(ticker.MaxNLocator(plate.cols + 1)) # n columns
|
|
ax1.yaxis.set_major_locator(ticker.MaxNLocator(plate.rows + 1)) # n rows
|
|
if plate.color_range:
|
|
cax = ax1.scatter(x_values, y_values, s=305, c=c_values, marker='s', vmin=plate.color_range[0],
|
|
vmax=plate.color_range[1]) # plot wells and color using the colormap
|
|
else:
|
|
cax = ax1.scatter(x_values, y_values, s=305, c=c_values, marker='s') # plot wells and color using the colormap
|
|
|
|
cax2 = ax1.scatter(dx_values, dy_values, s=80, c='white', marker='x', linewidths=(1.5,))
|
|
ax1.invert_yaxis() # invert y axis to math plate layout
|
|
cbar = fig1.colorbar(cax) # show colorbar
|
|
ax1.set_xlabel('Columns') # set axis and colorbar label
|
|
ax1.set_ylabel('Rows')
|
|
|
|
if str(plate.id) == 'average':
|
|
title = '$T_m$ heatmap (average)'
|
|
else:
|
|
title = '$T_m$ heatmap (plate #{})'.format(str(plate.id))
|
|
ax1.set_title(title)
|
|
cbar.set_label(u"Temperature [°C]")
|
|
|
|
canvas.draw()
|
|
|
|
def plot_derivative(self, plate, widget):
|
|
"""
|
|
Plot derivatives (Fig. 2)
|
|
"""
|
|
canvas = widget.canvas
|
|
canvas.clear()
|
|
fig2 = canvas.fig # new figure
|
|
fig2.suptitle('Individual Derivatives (plate #{})'.format(str(plate.id))) # set title
|
|
|
|
for plot_num in range(1, plate.wellnum + 1): # iterate over all wells
|
|
well = plate.wells[plot_num - 1] # get single well based on current plot number
|
|
ax = fig2.add_subplot(plate.rows, plate.cols, plot_num) # add new subplot
|
|
ax.autoscale(tight=True) # scale to data
|
|
ax.set_title(well.name, size='xx-small') # set title of current subplot to well identifier
|
|
|
|
if well in plate.denatured_wells:
|
|
ax.patch.set_facecolor('#FFD6D6')
|
|
|
|
if plot_num == plate.wellnum - plate.cols + 1: # add axis label to the subplot in the bottom left corner of the figure
|
|
ax.set_xlabel(u'T [°C]', size='xx-small')
|
|
ax.set_ylabel('dI/dT', size='xx-small')
|
|
|
|
x = plate.temprange # set values for the x axis to the given temperature range
|
|
if well.baseline_correction:
|
|
print(well.baseline)
|
|
y = well.derivatives[1] - well.baseline
|
|
else:
|
|
y = well.derivatives[1] # grab y values from the first derivative of the well
|
|
|
|
ax.xaxis.set_major_locator(ticker.MaxNLocator(4)) # only show three tickmarks on both axes
|
|
ax.yaxis.set_major_locator(ticker.MaxNLocator(4))
|
|
if well not in plate.denatured_wells: # check if well is denatured (without determined Tm)
|
|
tm = well.tm # if not, grab its Tm
|
|
else:
|
|
tm = np.NaN # else set Tm to np.NaN
|
|
if tm:
|
|
ax.axvline(x=tm) # plot vertical line at the Tm
|
|
ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8', alpha=0.5) # shade lower cutoff area
|
|
ax.axvspan(plate.tm_cutoff_high, plate.t2, facecolor='0.8', alpha=0.5) # shade higher cutoff area
|
|
for label in ax.get_xticklabels() + ax.get_yticklabels(): # set fontsize for all tick labels to xx-small
|
|
label.set_fontsize('xx-small')
|
|
|
|
cax = ax.plot(x, y) # plot data to the current subplot
|
|
canvas.draw()
|
|
|
|
|
|
def plot_raw(self, plate, widget):
|
|
"""
|
|
Plot raw data (Fig. 3)
|
|
"""
|
|
canvas = widget.canvas
|
|
canvas.clear()
|
|
fig3 = canvas.fig # new figure
|
|
fig3.suptitle('Raw Data (plate #{})'.format(str(plate.id))) # set title
|
|
|
|
for plot_num in range(1, plate.wellnum + 1): # iterate over all wells
|
|
well = plate.wells[plot_num - 1] # get single well based on current plot number
|
|
ax = fig3.add_subplot(plate.rows, plate.cols, plot_num) # add new subplot
|
|
ax.autoscale(tight=True) # scale to data
|
|
ax.set_title(well.name, size='xx-small') # set title of current subplot to well identifier
|
|
|
|
if well in plate.denatured_wells:
|
|
ax.patch.set_facecolor('#FFD6D6')
|
|
|
|
if plot_num == plate.wellnum - plate.cols + 1: # add axis label to the subplot in the bottom left corner of the figure
|
|
ax.set_xlabel(u'T [°C]', size='xx-small')
|
|
ax.set_ylabel('I', size='xx-small')
|
|
|
|
x = plate.temprange # set values for the x axis to the given temperature range
|
|
y = well.raw # grab y values from the raw data of the well
|
|
|
|
ax.xaxis.set_major_locator(ticker.MaxNLocator(4)) # only show three tickmarks on both axes
|
|
ax.yaxis.set_major_locator(ticker.MaxNLocator(4))
|
|
ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8', alpha=0.5) # shade lower cutoff area
|
|
ax.axvspan(plate.tm_cutoff_high, plate.t2, facecolor='0.8', alpha=0.5) # shade higher cutoff area
|
|
for label in ax.get_xticklabels() + ax.get_yticklabels(): # set fontsize for all tick labels to xx-small
|
|
label.set_fontsize('xx-small')
|
|
|
|
cax = ax.plot(x, y) # plot data to the current subplot
|
|
canvas.draw()
|
|
|
|
|
|
# def _plot_wrapper(self, plot, plate):
|
|
#
|
|
# if plot == 'raw':
|
|
# fig, ax = self._plot_raw(plate)
|
|
# elif plot == 'derivative':
|
|
# fig, ax = self._plot_derivative(plate)
|
|
# elif plot == 'tm_heatmap':
|
|
# fig, ax = self._plot_tm_heatmap_single(plate)
|
|
# else:
|
|
# raise NotImplementedError
|
|
# fig = None
|
|
# ax = None
|
|
# return (fig, ax)
|
|
#
|
|
# def plot_all(self):
|
|
#
|
|
# figures = []
|
|
#
|
|
# for plate in self.experiment.plates:
|
|
#
|
|
# figures.append(self._plot_wrapper('raw', plate))
|
|
# figures.append(self._plot_wrapper('derivative', plate))
|
|
# figures.append(self._plot_wrapper('tm_heatmap', plate))
|
|
#
|
|
# if len(self.experiment.plates) > 1:
|
|
# figures.append(self._plot_wrapper('tm_heatmap', self.experiment.avg_plate))
|
|
#
|
|
# return figures
|
|
|
|
|
|
|