1
0
Fork 0
mirror of https://github.com/Athemis/PyDSF.git synced 2025-04-04 22:36:02 +00:00
pyDSF/pydsf.py

605 lines
23 KiB
Python

#! /usr/bin/env python2
# -*- coding: utf-8 -*-
import csv
import multiprocessing as mp
try:
import matplotlib as mpl
mpl.use('Qt5Agg')
import matplotlib.ticker as ticker
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
except ImportError:
raise ImportError('----- Matplotlib must be installed. -----')
try:
import peakutils
except ImportError:
raise ImportError('----- PeakUtils must be installed. -----')
try:
import numpy as np
except ImportError:
raise ImportError('----- NumPy must be installed. -----')
try:
from scipy.signal import filtfilt, butter
from scipy import interpolate
from scipy import optimize
except ImportError:
raise ImportError('----- SciPy must be installed. -----')
class Well:
def __init__(self, owner):
self.owner = owner
self.name = None
self.raw = np.zeros(self.owner.reads, dtype=np.float)
self.filtered = np.zeros(self.owner.reads, dtype=np.float)
self.derivatives = np.zeros((4, self.owner.reads))
self.splines = {"raw": None,
"filtered": None,
"derivative1": None}
self.tm = np.NaN
self.tm_sd = np.NaN
self.baseline_correction = owner.baseline_correction
self.baseline = None
def filter_raw(self):
"""
Apply a filter to the raw data
"""
b, a = butter(3, 0.3)
self.filtered = filtfilt(b, a, self.raw)
def calc_spline(self, y):
"""
Calculate a spline that represents the smoothed data points
"""
spline = interpolate.InterpolatedUnivariateSpline(self.owner.temprange, y)
return spline
def calc_derivatives(self, spline='filtered'):
for t in self.owner.temprange:
temp = self.splines[spline].derivatives(t)
for i in range(4):
self.derivatives[i, t - self.owner.t1] = temp[i]
@staticmethod
def calc_baseline(y):
try:
baseline = peakutils.baseline(y)
return baseline
except:
return np.NaN
def calc_tm(self):
"""
Calculate the Tm of the well. Returns either the Tm or 'np.NaN'.
"""
# Check if the well has already been flagged as denatured
if self in self.owner.denatured_wells:
return np.NaN # Return 'NaN' if true
# First assume that the well is denatured
self.owner.denatured_wells.append(self)
if self.owner.tm_cutoff_low != self.owner.t1 or self.owner.tm_cutoff_high != self.owner.t1:
x = np.arange(self.owner.tm_cutoff_low, self.owner.tm_cutoff_high + 1, self.owner.dt, dtype=float)
x = self.owner.temprange
y = self.derivatives[1]
if self.baseline_correction:
y = y - self.baseline
try:
peak_indexes = peakutils.indexes(y, min_dist=len(x)) # calculate a rough estimate of peaks; set min_dist
# temperature range to only find one/the highest peak
tm = peakutils.interpolate(x, y, ind=peak_indexes)[0] # increase resolution by fitting gaussian function
# to peak
except:
return np.NaN # In case of error, return no peak
try:
# Check if the peak is within cutoff range
if tm and tm >= self.owner.tm_cutoff_low and tm <= self.owner.tm_cutoff_high:
self.owner.denatured_wells.remove(self) # If everything is fine, remove the denatured flag
return tm # and return the Tm
else:
return np.NaN # otherwise, return NaN
except:
return np.NaN # In case of error, return NaN
def is_denatured(self):
"""
Check if the well is denatured. Returns true if the well has been already flagged as
denatured, no Tm was found, or if the initial signal intensity is above a user definded
threshold.
"""
denatured = True # Assumption is that the well is denatured
if self in self.owner.denatured_wells: # check if the well is already flagged as denatured
return denatured # return true if it is
if self.tm and (self.tm <= self.owner.tm_cutoff_low or self.tm >= self.owner.tm_cutoff_high):
denatured = True
return denatured
for i in self.derivatives[1]: # Iterate over all points in the first derivative
if i > 0: # If a positive slope is found
denatured = False # set denatured flag to False
reads = int(round(self.owner.reads / 10)) # How many values should be checked against the signal threshold:
# 1/10 of the total number of data point
read = 0 # Initialize running variable representing the current data point
if not denatured:
for j in self.filtered: # Iterate over the filtered data
if self.owner.signal_threshold: # If a signal threshold was defined
if j > self.owner.signal_threshold and read <= reads: # iterate over 1/10 of all data points
# and check for values larger than the threshold.
denatured = True # Set flag to True if a match is found
print("{}: {}".format(self.name, j))
return denatured # and return
read += 1
return denatured
def analyze(self):
self.filter_raw()
self.splines["raw"] = self.calc_spline(self.raw)
self.splines["filtered"] = self.calc_spline(self.filtered)
self.calc_derivatives()
if self.baseline_correction:
self.baseline = self.calc_baseline(self.derivatives[1])
if self.is_denatured():
self.owner.denatured_wells.append(self)
self.splines["derivative1"] = self.calc_spline(self.derivatives[1])
self.tm = self.calc_tm()
if self.tm is None:
self.tm = np.NaN
class Experiment:
def __init__(self, type, gui=None, files=None, replicates=None, t1=25, t2=95, dt=1, cols=12, rows=8,
cutoff_low=None, cutoff_high=None, signal_threshold=None, color_range=None, baseline_correction=False):
self.replicates = replicates
self.cols = cols
self.rows = rows
self.t1 = t1
self.t2 = t2
self.dt = dt
self.temprange = np.arange(self.t1, self.t2 + 1, self.dt, dtype=float)
self.reads = int(round((t2 + 1 - t1) / dt))
self.wellnum = self.cols * self.rows
self.files = files
self.type = type
self.wells = []
self.max_tm = None
self.min_tm = None
self.replicates = None
self.gui = gui
self.signal_threshold = signal_threshold
self.avg_plate = None
self.baseline_correction = baseline_correction
if cutoff_low:
self.tm_cutoff_low = cutoff_low
else:
self.tm_cutoff_low = self.t1
if cutoff_high:
self.tm_cutoff_high = cutoff_high
else:
self.tm_cutoff_high = self.t2
if color_range:
self.color_range = color_range
else:
self.color_range = None
self.plates = []
i = 1
for file in files:
plate = Plate(type=self.type, owner=self, filename=file, t1=self.t1, t2=self.t2, dt=self.dt, cols=self.cols,
rows=self.rows, cutoff_low=self.tm_cutoff_low, cutoff_high=self.tm_cutoff_high,
signal_threshold=self.signal_threshold, color_range=self.color_range)
plate.id = i
self.plates.append(plate)
i += 1
if len(files) > 1:
self.avg_plate = Plate(type=self.type, owner=self, filename=None, t1=self.t1, t2=self.t2, dt=self.dt,
cols=self.cols, rows=self.rows, cutoff_low=self.tm_cutoff_low,
cutoff_high=self.tm_cutoff_high, signal_threshold=self.signal_threshold,
color_range=self.color_range)
self.avg_plate.id = 'average'
def analyze(self):
for plate in self.plates:
plate.analyze(gui=self.gui)
if len(self.plates) > 1:
# self.tm_replicates = np.zeros( self.wellnum, dtype=float )
# self.tm_replicates_sd = np.zeros( self.wellnum, dtype=float )
for i in range(self.wellnum):
tmp = []
for plate in self.plates:
tm = plate.wells[i].tm
self.avg_plate.wells[i].name = plate.wells[i].name
if plate.wells[i] not in plate.denatured_wells:
tmp.append(tm)
if len(tmp) > 0:
# self.avg_plate.wells[i].tm = (sum(tmp)/len(tmp))
self.avg_plate.wells[i].tm = np.mean(tmp)
self.avg_plate.wells[i].tm_sd = np.std(tmp)
# self.tm_replicates[i] = (sum(tmp)/len(tmp))
else:
self.avg_plate.denatured_wells.append(self.avg_plate.wells[i])
class Plate:
def __init__(self, type, owner, id=None, filename=None, replicates=None, t1=None, t2=None, dt=None, cols=12, rows=8,
cutoff_low=None, cutoff_high=None, signal_threshold=None, color_range=None):
self.cols = cols
self.rows = rows
self.owner = owner
if t1:
self.t1 = t1
else:
self.t1 = owner.t1
if t1:
self.t2 = t2
else:
self.t2 = owner.t2
if t1:
self.dt = dt
else:
self.dt = owner.dt
self.temprange = np.arange(self.t1, self.t2 + 1, self.dt, dtype=float)
self.reads = int(round((t2 + 1 - t1) / dt))
self.wellnum = self.cols * self.rows
self.filename = filename
self.type = type
self.wells = []
self.max_tm = None
self.min_tm = None
self.replicates = None
self.signal_threshold = signal_threshold
self.id = id
self.baseline_correction = owner.baseline_correction
if cutoff_low:
self.tm_cutoff_low = cutoff_low
else:
self.tm_cutoff_low = self.t1
if cutoff_high:
self.tm_cutoff_high = cutoff_high
else:
self.tm_cutoff_high = self.t2
if color_range:
self.color_range = color_range
else:
self.color_range = None
self.denatured_wells = []
self.tms = []
for i in range(self.wellnum):
well = Well(owner=self)
self.wells.append(well)
def analytikJena(self):
"""
Data processing for Analytik Jena qTower 2.0 export files
"""
with open(self.filename, 'r') as f:
reader = csv.reader(f, delimiter=';', quoting=csv.QUOTE_NONE)
i = 0
for row in reader:
temp = np.zeros(self.reads, dtype=float)
for read in range(self.reads + 1):
if read > 0:
try:
temp[read - 1] = row[read]
except:
temp[read - 1] = 0.0
elif read == 0:
self.wells[i].name = row[read]
self.wells[i].raw = temp
i += 1
def analyze(self, gui=None):
try:
# Try to access data file in the given path
with open(self.filename) as f:
pass
except IOError as e:
# If the file is not found, or not accessible: abort
print('Error accessing file: {}'.format(e))
if self.type == 'Analytik Jena qTOWER 2.0/2.2':
self.analytikJena()
if gui:
update_progress_bar(gui.pb, 1)
else:
# Raise exception, if the instrument's name is unknown
raise NameError('Unknown instrument type: {}'.format(self.type))
for well in self.wells:
well.analyze()
if gui:
update_progress_bar(gui.pb, 15)
self.tms.append(well.tm)
if self.replicates:
if self.replicates == 'rows':
print("rows")
if self.replicates == 'cols':
print("cols")
# print(self.tms)
self.max_tm = max(self.tms)
self.min_tm = min(self.tms)
def write_tm_table(self, filename):
with open(filename, 'w') as f:
f.write('#{:<4s}{:>13s}\n'.format('ID', '"Tm [°C]"'))
for well in self.wells:
if np.isnan(well.tm) or well in self.denatured_wells:
f.write('{:<5s}{:>12s}\n'.format(well.name, 'NaN'))
else:
f.write('{:<5s}{:>12s}\n'.format(well.name, str(well.tm)))
def write_avg_tm_table(self, filename):
with open(filename, 'w') as f:
f.write('#{:<4s}{:>13s}{:>13s}\n'.format('"ID"', '"Tm [°C]"', '"SD"'))
for well in self.wells:
if np.isnan(well.tm) or well in self.denatured_wells:
f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name, 'NaN', 'NaN'))
else:
f.write('{:<5s}{:>12s}{:>12s}\n'.format(well.name, str(well.tm), str(well.tm_sd)))
def write_raw_table(self, filename):
with open(filename, 'w') as f:
f.write('#"Raw data"\n')
f.write('#{:<10s}'.format('"T [°C]"'))
for well in self.wells:
f.write('{:>15s}'.format(well.name))
f.write('\n')
i = 0
for t in self.temprange:
f.write('{:<10s}'.format(str(t)))
for well in self.wells:
d = well.raw[i]
f.write('{:>-15.3f}'.format(float(np.round(d, decimals=3))))
f.write('\n')
i += 1
def write_filtered_table(self, filename):
with open(filename, 'w') as f:
f.write('#"Filtered data" \n')
f.write('#{:<10s}'.format('"T [°C]"'))
for well in self.wells:
f.write('{:>15s}'.format(well.name))
f.write('\n')
i = 0
for t in self.temprange:
f.write('{:<10s}'.format(str(t)))
for well in self.wells:
d = well.filtered[i]
f.write('{:>-15.3f}'.format(float(np.round(d, decimals=3))))
f.write('\n')
i += 1
def write_derivative_table(self, filename):
with open(filename, 'w') as f:
f.write('#"Derivative dI/dT"\n')
f.write('#{:<10s}'.format('"T [°C]"'))
for well in self.wells:
f.write('{:>15s}'.format(well.name))
f.write('\n')
i = 0
for t in self.temprange:
f.write('{:<10s}'.format(str(t)))
for well in self.wells:
d = well.derivatives[1][i]
f.write('{:>-15.3f}'.format(float(np.round(d, decimals=3))))
f.write('\n')
i += 1
# TODO: Implement 'write_baseline_corrected_table()
def write_baseline_corrected_table(self, filename):
raise NotImplementedError
def update_progress_bar(bar, value):
bar.setValue(value)
class PlotResults():
def __init__(self, experiment):
self.experiment = experiment
def plot_tm_heatmap_single(self, plate, widget):
"""
Plot Tm heatmap (Fig. 1)
"""
x = 1 # Position in columns
y = 1 # Position in rows
x_values = [] # Array holding the columns
y_values = [] # Array holding the rows
c_values = [] # Array holding the color values aka Tm
dx_values = []
dy_values = []
dc_values = []
canvas = widget.canvas
canvas.clear()
for well in plate.wells: # Iterate over all wells
if well not in plate.denatured_wells: # Check if well is denatured (no Tm found)
c = well.tm # If not, set color to Tm
if c < plate.tm_cutoff_low: # Check if Tm is lower that the cutoff
c = plate.tm_cutoff_low # If it is, set color to cutoff
elif c > plate.tm_cutoff_high: # Check if Tm is higher that the cutoff
c = plate.tm_cutoff_high # If it is, set color to cutoff
else: # If the plate is denatured
c = plate.tm_cutoff_low # Set its color to the low cutoff
dx_values.append(x)
dy_values.append(y)
x_values.append(x) # Add values to the respective arrays
y_values.append(y)
c_values.append(c)
x += 1 # Increase column by one
if x > plate.cols: # If maximum column per row is reached
x = 1 # reset column to one
y += 1 # and increase row by one
fig1 = canvas.fig # new figure
ax1 = fig1.add_subplot(1, 1, 1) # A single canvas
ax1.autoscale(tight=True) # Scale plate size
ax1.xaxis.set_major_locator(ticker.MaxNLocator(plate.cols + 1)) # n columns
ax1.yaxis.set_major_locator(ticker.MaxNLocator(plate.rows + 1)) # n rows
if plate.color_range:
cax = ax1.scatter(x_values, y_values, s=305, c=c_values, marker='s', vmin=plate.color_range[0],
vmax=plate.color_range[1]) # plot wells and color using the colormap
else:
cax = ax1.scatter(x_values, y_values, s=305, c=c_values, marker='s') # plot wells and color using the colormap
cax2 = ax1.scatter(dx_values, dy_values, s=80, c='white', marker='x', linewidths=(1.5,))
ax1.invert_yaxis() # invert y axis to math plate layout
cbar = fig1.colorbar(cax) # show colorbar
ax1.set_xlabel('Columns') # set axis and colorbar label
ax1.set_ylabel('Rows')
if str(plate.id) == 'average':
title = '$T_m$ heatmap (average)'
else:
title = '$T_m$ heatmap (plate #{})'.format(str(plate.id))
ax1.set_title(title)
cbar.set_label(u"Temperature [°C]")
canvas.draw()
def plot_derivative(self, plate, widget):
"""
Plot derivatives (Fig. 2)
"""
canvas = widget.canvas
canvas.clear()
fig2 = canvas.fig # new figure
fig2.suptitle('Individual Derivatives (plate #{})'.format(str(plate.id))) # set title
for plot_num in range(1, plate.wellnum + 1): # iterate over all wells
well = plate.wells[plot_num - 1] # get single well based on current plot number
ax = fig2.add_subplot(plate.rows, plate.cols, plot_num) # add new subplot
ax.autoscale(tight=True) # scale to data
ax.set_title(well.name, size='xx-small') # set title of current subplot to well identifier
if well in plate.denatured_wells:
ax.patch.set_facecolor('#FFD6D6')
if plot_num == plate.wellnum - plate.cols + 1: # add axis label to the subplot in the bottom left corner of the figure
ax.set_xlabel(u'T [°C]', size='xx-small')
ax.set_ylabel('dI/dT', size='xx-small')
x = plate.temprange # set values for the x axis to the given temperature range
if well.baseline_correction:
print(well.baseline)
y = well.derivatives[1] - well.baseline
else:
y = well.derivatives[1] # grab y values from the first derivative of the well
ax.xaxis.set_major_locator(ticker.MaxNLocator(4)) # only show three tickmarks on both axes
ax.yaxis.set_major_locator(ticker.MaxNLocator(4))
if well not in plate.denatured_wells: # check if well is denatured (without determined Tm)
tm = well.tm # if not, grab its Tm
else:
tm = np.NaN # else set Tm to np.NaN
if tm:
ax.axvline(x=tm) # plot vertical line at the Tm
ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8', alpha=0.5) # shade lower cutoff area
ax.axvspan(plate.tm_cutoff_high, plate.t2, facecolor='0.8', alpha=0.5) # shade higher cutoff area
for label in ax.get_xticklabels() + ax.get_yticklabels(): # set fontsize for all tick labels to xx-small
label.set_fontsize('xx-small')
cax = ax.plot(x, y) # plot data to the current subplot
canvas.draw()
def plot_raw(self, plate, widget):
"""
Plot raw data (Fig. 3)
"""
canvas = widget.canvas
canvas.clear()
fig3 = canvas.fig # new figure
fig3.suptitle('Raw Data (plate #{})'.format(str(plate.id))) # set title
for plot_num in range(1, plate.wellnum + 1): # iterate over all wells
well = plate.wells[plot_num - 1] # get single well based on current plot number
ax = fig3.add_subplot(plate.rows, plate.cols, plot_num) # add new subplot
ax.autoscale(tight=True) # scale to data
ax.set_title(well.name, size='xx-small') # set title of current subplot to well identifier
if well in plate.denatured_wells:
ax.patch.set_facecolor('#FFD6D6')
if plot_num == plate.wellnum - plate.cols + 1: # add axis label to the subplot in the bottom left corner of the figure
ax.set_xlabel(u'T [°C]', size='xx-small')
ax.set_ylabel('I', size='xx-small')
x = plate.temprange # set values for the x axis to the given temperature range
y = well.raw # grab y values from the raw data of the well
ax.xaxis.set_major_locator(ticker.MaxNLocator(4)) # only show three tickmarks on both axes
ax.yaxis.set_major_locator(ticker.MaxNLocator(4))
ax.axvspan(plate.t1, plate.tm_cutoff_low, facecolor='0.8', alpha=0.5) # shade lower cutoff area
ax.axvspan(plate.tm_cutoff_high, plate.t2, facecolor='0.8', alpha=0.5) # shade higher cutoff area
for label in ax.get_xticklabels() + ax.get_yticklabels(): # set fontsize for all tick labels to xx-small
label.set_fontsize('xx-small')
cax = ax.plot(x, y) # plot data to the current subplot
canvas.draw()
# def _plot_wrapper(self, plot, plate):
#
# if plot == 'raw':
# fig, ax = self._plot_raw(plate)
# elif plot == 'derivative':
# fig, ax = self._plot_derivative(plate)
# elif plot == 'tm_heatmap':
# fig, ax = self._plot_tm_heatmap_single(plate)
# else:
# raise NotImplementedError
# fig = None
# ax = None
# return (fig, ax)
#
# def plot_all(self):
#
# figures = []
#
# for plate in self.experiment.plates:
#
# figures.append(self._plot_wrapper('raw', plate))
# figures.append(self._plot_wrapper('derivative', plate))
# figures.append(self._plot_wrapper('tm_heatmap', plate))
#
# if len(self.experiment.plates) > 1:
# figures.append(self._plot_wrapper('tm_heatmap', self.experiment.avg_plate))
#
# return figures