diff --git a/analyze-cli.py b/analyze-cli.py index 9dcc6cf..d7e5148 100755 --- a/analyze-cli.py +++ b/analyze-cli.py @@ -36,7 +36,6 @@ except ImportError: class ExperimentHelper(): - def __init__(self, experiment, logger): self.exp = experiment self.logger = logger @@ -57,18 +56,20 @@ class ExperimentHelper(): ax.set_title(ax_title) for r in m.replicates: - ax.plot(r.x, r.y, linestyle='None', - marker='o', ms=3, fillstyle='none', + ax.plot(r.x, + r.y, + linestyle='None', + marker='o', + ms=3, + fillstyle='none', label='replicate #{}'.format(r.num)) - y = self.linear_regression_function(r.fitresult['slope'], - r.x, + y = self.linear_regression_function(r.fitresult['slope'], r.x, r.fitresult['intercept']) ax.plot(r.x, y, 'k-') ax.axvspan(m.xlim[0], m.xlim[1], facecolor='0.8', alpha=0.5) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) - plt.savefig('{}/fit_{}_{}.png'.format(outpath, - m.concentration, + plt.savefig('{}/fit_{}_{}.png'.format(outpath, m.concentration, m.concentration_unit), bbox_inches='tight') plt.close(fig) @@ -82,18 +83,18 @@ class ExperimentHelper(): ax.errorbar(exp.raw_kinetic_data['x'], exp.raw_kinetic_data['y'], yerr=exp.raw_kinetic_data['yerr'], - fmt='ok', ms=3, fillstyle='none', label="Data with error") + fmt='ok', + ms=3, + fillstyle='none', + label="Data with error") if exp.mm: - y = exp.mm_kinetics_function(exp.mm['x'], - exp.mm['vmax'], + y = exp.mm_kinetics_function(exp.mm['x'], exp.mm['vmax'], exp.mm['Km']) ax.plot(exp.mm['x'], y, 'b-', label="Michaelis-Menten") if exp.hill: - y = exp.hill_kinetics_function(exp.hill['x'], - exp.hill['vmax'], - exp.hill['Kprime'], - exp.hill['h']) + y = exp.hill_kinetics_function(exp.hill['x'], exp.hill['vmax'], + exp.hill['Kprime'], exp.hill['h']) ax.plot(exp.hill['x'], y, 'g-', label="Hill") ax.legend(loc='best', fancybox=True) @@ -109,9 +110,7 @@ class ExperimentHelper(): writer = csv.writer(csvfile, dialect='excel-tab') writer.writerow(['# LINEAR FITS']) writer.writerow([]) - writer.writerow(['# concentration', - 'avg. slope', - 'slope std_err', + writer.writerow(['# concentration', 'avg. slope', 'slope std_err', 'replicates (slope, intercept and r value)']) for m in exp.measurements: row = [m.concentration, m.avg_slope, m.avg_slope_err] @@ -151,9 +150,7 @@ def parse_arguments(): parser.add_argument('start', type=np.float64, help='start of fitting window') - parser.add_argument('end', - type=np.float64, - help='end of fitting window') + parser.add_argument('end', type=np.float64, help='end of fitting window') parser.add_argument('input', type=str, help='directory containing input files in csv format') @@ -177,18 +174,18 @@ def initialize_logger(): formatter = ColoredFormatter(fmt, datefmt=None, reset=True, - log_colors={'DEBUG': 'cyan', - 'INFO': 'green', - 'WARNING': 'yellow', - 'ERROR': 'red', - 'CRITICAL': 'red,bg_white'}, + log_colors={ + 'DEBUG': 'cyan', + 'INFO': 'green', + 'WARNING': 'yellow', + 'ERROR': 'red', + 'CRITICAL': 'red,bg_white' + }, secondary_log_colors={}, style='%') else: fmt = '%(levelname)-8s%(message)s' - formatter = logging.Formatter(fmt, - datefmt=None, - style='%') + formatter = logging.Formatter(fmt, datefmt=None, style='%') logging.captureWarnings(True) logger = logging.getLogger('pyKinetics-cli') @@ -274,5 +271,6 @@ def main(): logger.critical('CRITICAL: '.format(msg)) raise ValueError(msg) + if __name__ == "__main__": main() diff --git a/libkinetics/__init__.py b/libkinetics/__init__.py index 5e2ed72..541c9c7 100644 --- a/libkinetics/__init__.py +++ b/libkinetics/__init__.py @@ -21,8 +21,7 @@ class Replicate(): self.fitresult = self.fit() def fit(self): - ind_min_max = np.where((self.x >= self.xlim[0]) & - (self.x <= self.xlim[1])) + ind_min_max = np.where((self.x >= self.xlim[0]) & (self.x <= self.xlim[1])) x_for_fit = np.take(self.x, ind_min_max) y_for_fit = np.take(self.y, ind_min_max) @@ -32,12 +31,10 @@ class Replicate(): category=RuntimeWarning, message='invalid value encountered in sqrt') - (slope, intercept, - r_value, - p_value, - std_err) = stats.linregress(x_for_fit, y_for_fit) + (slope, intercept, r_value, p_value, std_err + ) = stats.linregress(x_for_fit, y_for_fit) - r_squared = r_value**2 + r_squared = r_value ** 2 conc = '{} {}'.format(self.owner.concentration, self.owner.concentration_unit) @@ -57,12 +54,14 @@ class Replicate(): 'value for further calculations!') self.logger.info(' intercept: {}'.format(slope)) - return {'slope': slope, - 'intercept': intercept, - 'r_value': r_value, - 'r_squared': r_squared, - 'p_value': p_value, - 'std_err': std_err} + return { + 'slope': slope, + 'intercept': intercept, + 'r_value': r_value, + 'r_squared': r_squared, + 'p_value': p_value, + 'std_err': std_err + } class Measurement(): @@ -86,8 +85,7 @@ class Measurement(): length_x, num_replicates = self.y.shape for n in range(num_replicates): - self.replicates.append(Replicate(n, - (self.x, self.y[:, n:n+1]), + self.replicates.append(Replicate(n, (self.x, self.y[:, n:n + 1]), self)) for r in self.replicates: @@ -141,9 +139,7 @@ class Experiment(): self.fit_to_replicates = fit_to_replicates # dictionary to store data for the kinetics calculation - self.raw_kinetic_data = {'x': [], - 'y': [], - 'yerr': []} + self.raw_kinetic_data = {'x': [], 'y': [], 'yerr': []} self.xlim = xlim # parse data files and generate measurements @@ -196,11 +192,11 @@ class Experiment(): m.plot(outpath) def mm_kinetics_function(self, x, vmax, Km): - v = (vmax*x)/(Km+x) + v = (vmax * x) / (Km + x) return v def hill_kinetics_function(self, x, vmax, Kprime, h): - v = (vmax*(x**h))/(Kprime+(x**h)) + v = (vmax * (x ** h)) / (Kprime + (x ** h)) return v def do_mm_kinetics(self): @@ -218,10 +214,7 @@ class Experiment(): self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0])) self.logger.info(' Km: {} ± {}'.format(Km, perr[1])) - return {'vmax': float(vmax), - 'Km': float(Km), - 'perr': perr, - 'x': x} + return {'vmax': float(vmax), 'Km': float(Km), 'perr': perr, 'x': x} except: msg = 'Calculation of Michaelis-Menten kinetics failed!' if self.logger: @@ -248,11 +241,13 @@ class Experiment(): self.logger.info(' K_prime: {} ± {}'.format(Kprime, perr[1])) self.logger.info(' h: {} ± {}'.format(h, perr[2])) - return {'vmax': float(vmax), - 'Kprime': float(Kprime), - 'perr': perr, - 'h': h, - 'x': x} + return { + 'vmax': float(vmax), + 'Kprime': float(Kprime), + 'perr': perr, + 'h': h, + 'x': x + } except: msg = 'Calculation of Hill kinetics failed!' if self.logger: