From 65ce7e7e72fdcfea4e4d7192909e11e1addcaa4d Mon Sep 17 00:00:00 2001 From: Alexander Minges Date: Thu, 14 Apr 2016 14:04:18 +0200 Subject: [PATCH] calculate adjusted r-squared --- analyze-cli.py | 7 ++++++- libkinetics/__init__.py | 26 ++++++++++++++++---------- 2 files changed, 22 insertions(+), 11 deletions(-) diff --git a/analyze-cli.py b/analyze-cli.py index 9658172..73fd447 100755 --- a/analyze-cli.py +++ b/analyze-cli.py @@ -267,6 +267,7 @@ def main(): # grab fitting window from provided arguments fitting_window = (args.start, args.end) + # scaling of axes in kinetics plot if args.log_x: logx = args.log_x else: @@ -276,17 +277,21 @@ def main(): logy = args.log_y else: logy = False - + + # suppress calculation of Michaelis-Menten kinetics if args.no_michaelis: no_mm = args.no_michaelis else: no_mm = False + # do Hill kinetics if args.hill: do_hill = args.hill else: do_hill = False + # perform global fit of kinetic function(s) to all replicates + # instead of their means if args.replicates: fit_to_replicates = args.replicates else: diff --git a/libkinetics/__init__.py b/libkinetics/__init__.py index 0be8752..6a8922b 100644 --- a/libkinetics/__init__.py +++ b/libkinetics/__init__.py @@ -82,22 +82,28 @@ class Replicate(): ) = stats.linregress(x_for_fit, y_for_fit) r_squared = r_value ** 2 + + n = len(x_for_fit[0]) # number of observations + k = 2 # independent variables: slope and intercept + + # calculcate adjusted R² + adj_r_squared = r_squared - (1 - r_squared) * k/(n - k - 1) + conc = '{} {}'.format(self.owner.concentration, self.owner.concentration_unit) self.logger.info('Linear fit for {} #{}:'.format(conc, self.num)) - if r_squared < 0.9 and r_squared > 0.7: - msg = ' r-squared: {} < 0.9; Check fit manually!' - self.logger.warning(msg.format(round(r_squared, 4))) - elif r_squared < 0.7: - msg = ' r-squared: {} < 0.7; Linear fit probably failed!' - self.logger.warning(msg.format(round(r_squared, 4))) - else: - msg = ' r-squared: {}' - self.logger.info(msg.format(round(r_squared, 4))) + if adj_r_squared < 0.9 and adj_r_squared > 0.7: + msg = ' adjusted R² < 0.9; Check fit manually!' + self.logger.warning(msg.format(round(adj_r_squared, 4))) + elif adj_r_squared < 0.7: + msg = ' adjusted R² < 0.7; Linear fit probably failed!' + self.logger.warning(msg.format(round(adj_r_squared, 4))) + + self.logger.info(' R²/adjusted R²: {}/{}'.format(round(r_squared, 4), round(adj_r_squared, 4))) self.logger.info(' slope: {}'.format(slope)) if slope < 0: - self.logger.info(' Slope is negative. Will use absolute ' + self.logger.info(' → Slope is negative. Will use absolute ' 'value for further calculations!') self.logger.info(' intercept: {}'.format(slope))