mirror of
https://github.com/Athemis/pyKinetics.git
synced 2025-04-06 06:56:04 +00:00
More robust error handling; check third-party imports
This commit is contained in:
parent
d5e66fd4fe
commit
754c62ffd1
1 changed files with 62 additions and 35 deletions
|
@ -1,10 +1,19 @@
|
||||||
#!/usr/bin/python
|
#!/usr/bin/python
|
||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
from scipy import stats, optimize
|
|
||||||
import numpy as np
|
|
||||||
import logging
|
import logging
|
||||||
import warnings
|
import warnings
|
||||||
|
import operator
|
||||||
|
|
||||||
|
try:
|
||||||
|
import numpy as np
|
||||||
|
except ImportError:
|
||||||
|
print('----- NumPy must be installed! -----')
|
||||||
|
|
||||||
|
try:
|
||||||
|
from scipy import stats, optimize
|
||||||
|
except ImportError:
|
||||||
|
print('----- SciPy must be installed! -----')
|
||||||
|
|
||||||
|
|
||||||
class Error(Exception):
|
class Error(Exception):
|
||||||
|
@ -128,6 +137,9 @@ class Measurement():
|
||||||
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
def get_concentration(self):
|
||||||
|
return self.concentration
|
||||||
|
|
||||||
|
|
||||||
class Experiment():
|
class Experiment():
|
||||||
|
|
||||||
|
@ -142,7 +154,8 @@ class Experiment():
|
||||||
and log file.
|
and log file.
|
||||||
measurements: array_like
|
measurements: array_like
|
||||||
list of individual measurements of the experiment.
|
list of individual measurements of the experiment.
|
||||||
Usually defined by different substrate concentrations.
|
Individual measurements are sorted by their substrate
|
||||||
|
concentration.
|
||||||
fit_to_replicates: boolean
|
fit_to_replicates: boolean
|
||||||
whether to fit to individual replicates instead to the average of
|
whether to fit to individual replicates instead to the average of
|
||||||
each measurement.
|
each measurement.
|
||||||
|
@ -192,12 +205,22 @@ class Experiment():
|
||||||
|
|
||||||
# parse data files and generate measurements
|
# parse data files and generate measurements
|
||||||
for csvfile in data_files:
|
for csvfile in data_files:
|
||||||
tmp = np.genfromtxt(str(csvfile), comments='#')
|
try:
|
||||||
with open(str(csvfile)) as datafile:
|
tmp = np.genfromtxt(str(csvfile), comments='#')
|
||||||
head = [next(datafile) for x in range(2)]
|
with open(str(csvfile)) as datafile:
|
||||||
|
head = [next(datafile) for x in range(2)]
|
||||||
|
except OSError:
|
||||||
|
msg = "Failed reading file {}".format(str(csvfile))
|
||||||
|
self.logger.error(msg)
|
||||||
|
raise
|
||||||
|
|
||||||
# extract concentration and unit from header
|
# extract concentration and unit from header
|
||||||
# TODO: move unit to parameter
|
# TODO: move unit to parameter
|
||||||
# TODO: More error-proof header detection
|
# check header for correct number of items
|
||||||
|
if len(head) < 2 or len(head) > 2:
|
||||||
|
msg = 'Parsing header of data files failed! Wrong format?'
|
||||||
|
self.logger.error(msg)
|
||||||
|
raise Error(msg)
|
||||||
conc = head[0].strip('#').strip()
|
conc = head[0].strip('#').strip()
|
||||||
unit = head[1].strip('#').strip()
|
unit = head[1].strip('#').strip()
|
||||||
# split x and y data apart
|
# split x and y data apart
|
||||||
|
@ -209,6 +232,10 @@ class Experiment():
|
||||||
measurement = Measurement((x, y), conc, unit, self)
|
measurement = Measurement((x, y), conc, unit, self)
|
||||||
self.measurements.append(measurement)
|
self.measurements.append(measurement)
|
||||||
|
|
||||||
|
# sort measurements by concentration
|
||||||
|
self.measurements = sorted(self.measurements,
|
||||||
|
key=operator.attrgetter('concentration'))
|
||||||
|
|
||||||
# iterate over all measurements
|
# iterate over all measurements
|
||||||
for m in self.measurements:
|
for m in self.measurements:
|
||||||
if self.fit_to_replicates:
|
if self.fit_to_replicates:
|
||||||
|
@ -306,20 +333,20 @@ class Experiment():
|
||||||
self.logger.error('{}'.format(msg))
|
self.logger.error('{}'.format(msg))
|
||||||
raise FitError(msg)
|
raise FitError(msg)
|
||||||
|
|
||||||
perr = np.sqrt(np.diag(pconv))
|
perr = np.sqrt(np.diag(pconv))
|
||||||
vmax = popt[0]
|
vmax = popt[0]
|
||||||
Km = popt[1]
|
Km = popt[1]
|
||||||
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
|
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
|
||||||
|
|
||||||
self.logger.info('Michaelis-Menten Kinetics:')
|
self.logger.info('Michaelis-Menten Kinetics:')
|
||||||
self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0]))
|
self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0]))
|
||||||
self.logger.info(' Km: {} ± {}'.format(Km, perr[1]))
|
self.logger.info(' Km: {} ± {}'.format(Km, perr[1]))
|
||||||
|
|
||||||
return {'vmax': np.float(vmax),
|
return {'vmax': np.float(vmax),
|
||||||
'Km': np.float(Km),
|
'Km': np.float(Km),
|
||||||
'vmax_err': np.float(perr[0]),
|
'vmax_err': np.float(perr[0]),
|
||||||
'Km_err': np.float(perr[1]),
|
'Km_err': np.float(perr[1]),
|
||||||
'x': x}
|
'x': x}
|
||||||
|
|
||||||
def do_hill_kinetics(self):
|
def do_hill_kinetics(self):
|
||||||
"""
|
"""
|
||||||
|
@ -351,22 +378,22 @@ class Experiment():
|
||||||
self.logger.error('{}'.format(msg))
|
self.logger.error('{}'.format(msg))
|
||||||
raise FitError(msg)
|
raise FitError(msg)
|
||||||
|
|
||||||
perr = np.sqrt(np.diag(pconv))
|
perr = np.sqrt(np.diag(pconv))
|
||||||
vmax = popt[0]
|
vmax = popt[0]
|
||||||
Kprime = popt[1]
|
Kprime = popt[1]
|
||||||
h = popt[2]
|
h = popt[2]
|
||||||
|
|
||||||
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
|
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
|
||||||
|
|
||||||
self.logger.info('Hill Kinetics:')
|
self.logger.info('Hill Kinetics:')
|
||||||
self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0]))
|
self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0]))
|
||||||
self.logger.info(' K_prime: {} ± {}'.format(Kprime, perr[1]))
|
self.logger.info(' K_prime: {} ± {}'.format(Kprime, perr[1]))
|
||||||
self.logger.info(' h: {} ± {}'.format(h, perr[2]))
|
self.logger.info(' h: {} ± {}'.format(h, perr[2]))
|
||||||
|
|
||||||
return {'vmax': np.float(vmax),
|
return {'vmax': np.float(vmax),
|
||||||
'Kprime': np.float(Kprime),
|
'Kprime': np.float(Kprime),
|
||||||
'vmax_err': np.float(perr[0]),
|
'vmax_err': np.float(perr[0]),
|
||||||
'Kprime_err': np.float(perr[1]),
|
'Kprime_err': np.float(perr[1]),
|
||||||
'h_err': np.float(perr[2]),
|
'h_err': np.float(perr[2]),
|
||||||
'h': np.float(h),
|
'h': np.float(h),
|
||||||
'x': x}
|
'x': x}
|
||||||
|
|
Loading…
Add table
Reference in a new issue