diff --git a/analyze-cli.py b/analyze-cli.py new file mode 100755 index 0000000..4dc2045 --- /dev/null +++ b/analyze-cli.py @@ -0,0 +1,65 @@ +#!/usr/bin/python + +import argparse +import logging +import csv +from pathlib import Path + +import libkinetics + + +def parse_arguments(): + + parser = argparse.ArgumentParser() + parser.add_argument('-v', + '--verbose', + action='store_true', + help='increase output verbosity') + parser.add_argument('-wh', + '--with_hill', + action='store_true', + help='compute additional kinetics using Hill equation') + parser.add_argument('input', + type=str, + help='directory containing input files in csv format') + parser.add_argument('output', + type=str, + help='results will be written to this directory') + + args = parser.parse_args() + + return args + + +def main(): + # parse command line arguments + args = parse_arguments() + if args.with_hill: + do_hill = args.with_hill + else: + do_hill = False + try: + input_path = Path(args.input).resolve() + except FileNotFoundError: + print('Path containing input data not found: {}'.format(args.input)) + raise + try: + output_path = Path(args.output).resolve() + except FileNotFoundError: + print('Path for writing results not found: {}'.format(args.output)) + raise + + if output_path.is_dir(): + if input_path.is_dir(): + data_files = sorted(input_path.glob('**/*.csv')) + exp = libkinetics.Experiment(data_files, (10, 25), do_hill) + exp.plot_data(str(output_path)) + exp.plot_kinetics(str(output_path)) + exp.write_data(str(output_path)) + else: + raise ValueError('{} is not a directory!'.format(input_path)) + else: + raise ValueError('{} is not a directory!'.format(output_path)) + +if __name__ == "__main__": + main() diff --git a/analyze.py b/libkinetics/__init__.py old mode 100755 new mode 100644 similarity index 63% rename from analyze.py rename to libkinetics/__init__.py index 0ca63f9..57088d5 --- a/analyze.py +++ b/libkinetics/__init__.py @@ -3,11 +3,11 @@ from scipy import stats, optimize import numpy as np import matplotlib.pyplot as plt -import glob import csv class Replicate(): + def __init__(self, x, y, owner): self.x = x self.y = y @@ -59,7 +59,7 @@ class Measurement(): self.avg_slope = np.average(self.slopes) self.avg_slope_err = np.std(self.slopes) - def plot(self): + def plot(self, outpath): fig, ax = plt.subplots() ax.set_xlabel('Time [s]') ax.set_ylabel('Absorption (340 nm) [Au]') @@ -73,8 +73,9 @@ class Measurement(): 'k-') ax.axvspan(self.xlim[0], self.xlim[1], facecolor='0.8', alpha=0.5) - plt.savefig('out/fit_{}_{}.png'.format(self.concentration, - self.concentration_unit), + plt.savefig('{}/fit_{}_{}.png'.format(outpath, + self.concentration, + self.concentration_unit), bbox_inches='tight') plt.close(fig) @@ -88,7 +89,7 @@ class Measurement(): class Experiment(): - def __init__(self, data_files, xlim): + def __init__(self, data_files, xlim, do_hill=False): # collction of indepentend measurements self.measurements = [] @@ -97,15 +98,11 @@ class Experiment(): 'y': [], 'yerr': []} self.xlim = xlim - - # variables to store calculated Michaelis-Menten and Hill kinetics - self.mm = None - self.hill = None # parse data files and generate measurements for csvfile in data_files: - tmp = np.genfromtxt(csvfile, comments='#') - with open(csvfile) as datafile: + tmp = np.genfromtxt(str(csvfile), comments='#') + with open(str(csvfile)) as datafile: head = [next(datafile) for x in range(2)] # extract concentration and unit from header # TODO: move unit to parameter @@ -113,25 +110,34 @@ class Experiment(): conc = head[0].strip('#').strip() unit = head[1].strip('#').strip() # split x and y data apart - # first column is x data (time); following columns contain + # first column is x data (time); following columns contain # replicates of y data (absorption, etc.) x = tmp[:, 0] y = tmp[:, 1:] # create new measurement and append to list measurement = Measurement(x, y, conc, unit, self) self.measurements.append(measurement) - + # iterate over all measurements for m in self.measurements: - # extract relevant data for kinetics calculation (concentration, + # extract relevant data for kinetics calculation (concentration, # average slope and error) self.raw_kinetic_data['x'].append(m.concentration) self.raw_kinetic_data['y'].append(np.absolute(m.avg_slope)) self.raw_kinetic_data['yerr'].append(m.avg_slope_err) - def plot_data(self): + # calculate kinetics + self.mm = self.do_mm_kinetics() + if do_hill: + self.hill = self.do_hill_kinetics() + else: + self.hill = None + + def plot_data(self, outpath): + # iterate over all measurements for m in self.measurements: - m.plot() + # plot each measurement + m.plot(outpath) def mm_kinetics_function(self, x, vmax, Km): v = (vmax*x)/(Km+x) @@ -142,39 +148,47 @@ class Experiment(): return v def do_mm_kinetics(self): - popt, pconv = optimize.curve_fit(self.mm_kinetics_function, - self.raw_kinetic_data['x'], - self.raw_kinetic_data['y']) + try: + popt, pconv = optimize.curve_fit(self.mm_kinetics_function, + self.raw_kinetic_data['x'], + self.raw_kinetic_data['y']) - perr = np.sqrt(np.diag(pconv)) - vmax = popt[0] - Km = popt[1] - x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001) + perr = np.sqrt(np.diag(pconv)) + vmax = popt[0] + Km = popt[1] + x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001) - return {'vmax': float(vmax), - 'Km': float(Km), - 'perr': perr, - 'x': x} + return {'vmax': float(vmax), + 'Km': float(Km), + 'perr': perr, + 'x': x} + except: + print('Calculation of Hill kinetics failed!') + return None def do_hill_kinetics(self): - popt, pconv = optimize.curve_fit(self.hill_kinetics_function, - self.raw_kinetic_data['x'], - self.raw_kinetic_data['y']) + try: + popt, pconv = optimize.curve_fit(self.hill_kinetics_function, + self.raw_kinetic_data['x'], + self.raw_kinetic_data['y']) - perr = np.sqrt(np.diag(pconv)) - vmax = popt[0] - Kprime = popt[1] - h = popt[2] + perr = np.sqrt(np.diag(pconv)) + vmax = popt[0] + Kprime = popt[1] + h = popt[2] - x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001) + x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001) - return {'vmax': float(vmax), - 'Kprime': float(Kprime), - 'perr': perr, - 'h': h, - 'x': x} + return {'vmax': float(vmax), + 'Kprime': float(Kprime), + 'perr': perr, + 'h': h, + 'x': x} + except: + print('Calculation of Hill kinetics failed!') + return None - def plot_kinetics(self): + def plot_kinetics(self, outpath): fig, ax = plt.subplots() ax.set_xlabel('c [mM]') ax.set_ylabel('dA/dt [Au/s]') @@ -184,28 +198,24 @@ class Experiment(): self.raw_kinetic_data['y'], yerr=self.raw_kinetic_data['yerr'], fmt='ok', ms=3, fillstyle='none', label="Data with error") - # linestyle='None', marker='o', ms=3, fillstyle='none' - self.mm = self.do_mm_kinetics() - self.hill = self.do_hill_kinetics() - print(self.mm) - print(self.hill) - - ax.plot(self.mm['x'], - (self.mm['vmax']*self.mm['x'])/(self.mm['Km']+self.mm['x']), - 'b-', label="Michaelis-Menten") - ax.plot(self.hill['x'], - ((self.hill['vmax']*(self.hill['x']**self.hill['h'])) / - (self.hill['Kprime'] + (self.hill['x']**self.hill['h']))), - 'g-', label="Hill") + if self.mm: + ax.plot(self.mm['x'], + (self.mm['vmax']*self.mm['x'])/(self.mm['Km']+self.mm['x']), 'b-', label="Michaelis-Menten") + if self.hill: + ax.plot(self.hill['x'], + ((self.hill['vmax']*(self.hill['x']**self.hill['h'])) / + (self.hill['Kprime'] + (self.hill['x']**self.hill['h']))), 'g-', label="Hill") ax.legend(loc='best', fancybox=True) - plt.savefig('out/kinetics.png', bbox_inches='tight') + plt.savefig('{}/kinetics.png'.format(outpath), bbox_inches='tight') plt.close(fig) - def write_data(self): + def write_data(self, outpath): - with open('out/results.csv', 'w', newline='\n') as csvfile: + with open('{}/results.csv'.format(outpath), + 'w', + newline='\n') as csvfile: writer = csv.writer(csvfile, dialect='excel-tab') writer.writerow(['# LINEAR FITS']) @@ -223,22 +233,12 @@ class Experiment(): writer.writerow(row) writer.writerow([]) - writer.writerow(['# MICHAELIS-MENTEN KINETICS']) - writer.writerow(['# vmax', 'Km']) - writer.writerow([self.mm['vmax'], self.mm['Km']]) - - writer.writerow(['# HILL KINETICS']) - writer.writerow(['# vmax', 'Kprime', 'h']) - writer.writerow([self.hill['vmax'], self.hill['Kprime'], - self.hill['h']]) - - -def main(): - data_files = glob.glob('csv/*.csv') - exp = Experiment(data_files, (10, 25)) - exp.plot_data() - exp.plot_kinetics() - exp.write_data() - -if __name__ == "__main__": - main() + if self.mm: + writer.writerow(['# MICHAELIS-MENTEN KINETICS']) + writer.writerow(['# vmax', 'Km']) + writer.writerow([self.mm['vmax'], self.mm['Km']]) + if self.hill: + writer.writerow(['# HILL KINETICS']) + writer.writerow(['# vmax', 'Kprime', 'h']) + writer.writerow([self.hill['vmax'], self.hill['Kprime'], + self.hill['h']])