From 7bbb368499543bab33d406808735c7fae32d346e Mon Sep 17 00:00:00 2001 From: Alexander Minges Date: Tue, 18 Aug 2015 13:10:26 +0200 Subject: [PATCH] Initial commit of analyze.py --- analyze.py | 244 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 244 insertions(+) create mode 100755 analyze.py diff --git a/analyze.py b/analyze.py new file mode 100755 index 0000000..0ca63f9 --- /dev/null +++ b/analyze.py @@ -0,0 +1,244 @@ +#!/usr/bin/python + +from scipy import stats, optimize +import numpy as np +import matplotlib.pyplot as plt +import glob +import csv + + +class Replicate(): + def __init__(self, x, y, owner): + self.x = x + self.y = y + self.owner = owner + self.xlim = owner.xlim + self.fitresult = self.fit() + + def fit(self): + ind_min_max = np.where((self.x >= self.xlim[0]) & + (self.x <= self.xlim[1])) + x_for_fit = np.take(self.x, ind_min_max) + y_for_fit = np.take(self.y, ind_min_max) + + (slope, intercept, + r_value, + p_value, + std_err) = stats.linregress(x_for_fit, y_for_fit) + + return {'slope': slope, + 'intercept': intercept, + 'r_value': r_value, + 'p_value': p_value, + 'std_err': std_err} + + +class Measurement(): + + def __init__(self, x, y, conc, conc_unit, owner): + self.concentration = float(conc) + self.concentration_unit = conc_unit + self.x = x + self.y = y + self.replicates = [] + self.owner = owner + self.xlim = owner.xlim + self.slopes = [] + self.avg_slope = None + self.avg_slope_err = None + + # extract number of replicates (num_replicates) + length_x, num_replicates = self.y.shape + + for n in range(num_replicates): + self.replicates.append(Replicate(self.x, self.y[:, n:n+1], self)) + + for r in self.replicates: + self.slopes.append(r.fitresult['slope']) + + self.avg_slope = np.average(self.slopes) + self.avg_slope_err = np.std(self.slopes) + + def plot(self): + fig, ax = plt.subplots() + ax.set_xlabel('Time [s]') + ax.set_ylabel('Absorption (340 nm) [Au]') + ax.set_title('Linear regression {} {}'.format(self.concentration, + self.concentration_unit)) + + for r in self.replicates: + ax.plot(r.x, r.y, linestyle='None', + marker='o', ms=3, fillstyle='none') + ax.plot(r.x, r.fitresult['slope']*r.x+r.fitresult['intercept'], + 'k-') + ax.axvspan(self.xlim[0], self.xlim[1], facecolor='0.8', alpha=0.5) + + plt.savefig('out/fit_{}_{}.png'.format(self.concentration, + self.concentration_unit), + bbox_inches='tight') + plt.close(fig) + + def get_results(self): + results = [] + for r in self.replicates: + results.append(r.fitresult) + + return results + + +class Experiment(): + + def __init__(self, data_files, xlim): + + # collction of indepentend measurements + self.measurements = [] + # dictionary to store data for the kinetics calculation + self.raw_kinetic_data = {'x': [], + 'y': [], + 'yerr': []} + self.xlim = xlim + + # variables to store calculated Michaelis-Menten and Hill kinetics + self.mm = None + self.hill = None + + # parse data files and generate measurements + for csvfile in data_files: + tmp = np.genfromtxt(csvfile, comments='#') + with open(csvfile) as datafile: + head = [next(datafile) for x in range(2)] + # extract concentration and unit from header + # TODO: move unit to parameter + # TODO: More error-proof header detection + conc = head[0].strip('#').strip() + unit = head[1].strip('#').strip() + # split x and y data apart + # first column is x data (time); following columns contain + # replicates of y data (absorption, etc.) + x = tmp[:, 0] + y = tmp[:, 1:] + # create new measurement and append to list + measurement = Measurement(x, y, conc, unit, self) + self.measurements.append(measurement) + + # iterate over all measurements + for m in self.measurements: + # extract relevant data for kinetics calculation (concentration, + # average slope and error) + self.raw_kinetic_data['x'].append(m.concentration) + self.raw_kinetic_data['y'].append(np.absolute(m.avg_slope)) + self.raw_kinetic_data['yerr'].append(m.avg_slope_err) + + def plot_data(self): + for m in self.measurements: + m.plot() + + def mm_kinetics_function(self, x, vmax, Km): + v = (vmax*x)/(Km+x) + return v + + def hill_kinetics_function(self, x, vmax, Kprime, h): + v = (vmax*(x**h))/(Kprime+(x**h)) + return v + + def do_mm_kinetics(self): + popt, pconv = optimize.curve_fit(self.mm_kinetics_function, + self.raw_kinetic_data['x'], + self.raw_kinetic_data['y']) + + perr = np.sqrt(np.diag(pconv)) + vmax = popt[0] + Km = popt[1] + x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001) + + return {'vmax': float(vmax), + 'Km': float(Km), + 'perr': perr, + 'x': x} + + def do_hill_kinetics(self): + popt, pconv = optimize.curve_fit(self.hill_kinetics_function, + self.raw_kinetic_data['x'], + self.raw_kinetic_data['y']) + + perr = np.sqrt(np.diag(pconv)) + vmax = popt[0] + Kprime = popt[1] + h = popt[2] + + x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001) + + return {'vmax': float(vmax), + 'Kprime': float(Kprime), + 'perr': perr, + 'h': h, + 'x': x} + + def plot_kinetics(self): + fig, ax = plt.subplots() + ax.set_xlabel('c [mM]') + ax.set_ylabel('dA/dt [Au/s]') + ax.set_title('Kinetics') + + ax.errorbar(self.raw_kinetic_data['x'], + self.raw_kinetic_data['y'], + yerr=self.raw_kinetic_data['yerr'], + fmt='ok', ms=3, fillstyle='none', label="Data with error") + # linestyle='None', marker='o', ms=3, fillstyle='none' + self.mm = self.do_mm_kinetics() + self.hill = self.do_hill_kinetics() + + print(self.mm) + print(self.hill) + + ax.plot(self.mm['x'], + (self.mm['vmax']*self.mm['x'])/(self.mm['Km']+self.mm['x']), + 'b-', label="Michaelis-Menten") + ax.plot(self.hill['x'], + ((self.hill['vmax']*(self.hill['x']**self.hill['h'])) / + (self.hill['Kprime'] + (self.hill['x']**self.hill['h']))), + 'g-', label="Hill") + + ax.legend(loc='best', fancybox=True) + plt.savefig('out/kinetics.png', bbox_inches='tight') + plt.close(fig) + + def write_data(self): + + with open('out/results.csv', 'w', newline='\n') as csvfile: + + writer = csv.writer(csvfile, dialect='excel-tab') + writer.writerow(['# LINEAR FITS']) + writer.writerow([]) + writer.writerow(['# concentration', + 'avg. slope', + 'slope std_err', + 'replicates (slope, intercept and r value)']) + for m in self.measurements: + row = [m.concentration, m.avg_slope, m.avg_slope_err] + for r in m.replicates: + row.append(r.fitresult['slope']) + row.append(r.fitresult['intercept']) + row.append(r.fitresult['r_value']) + writer.writerow(row) + + writer.writerow([]) + writer.writerow(['# MICHAELIS-MENTEN KINETICS']) + writer.writerow(['# vmax', 'Km']) + writer.writerow([self.mm['vmax'], self.mm['Km']]) + + writer.writerow(['# HILL KINETICS']) + writer.writerow(['# vmax', 'Kprime', 'h']) + writer.writerow([self.hill['vmax'], self.hill['Kprime'], + self.hill['h']]) + + +def main(): + data_files = glob.glob('csv/*.csv') + exp = Experiment(data_files, (10, 25)) + exp.plot_data() + exp.plot_kinetics() + exp.write_data() + +if __name__ == "__main__": + main()