#!/usr/bin/python # -*- coding: utf-8 -*- import argparse import logging import csv from pathlib import Path # check for third party modules. Matplotlib and NumPy are essential try: import matplotlib.pyplot as plt except ImportError: print('----- Matplotlib must be installed! -----') try: import numpy as np except ImportError: print('----- NumPy must be installed! -----') # colorlog is optional; inform user of non-colored output if not found try: from colorlog import ColoredFormatter COLORED_LOG = True except ImportError: COLORED_LOG = False print('----- Module colorlog not found. Console output will not be ' 'colored! -----') pass # check for libkinetics; if not found, there is something wrong with the # installation if pyKinetics try: import libkinetics except ImportError: print('---- Cannot find libkinetics! Check your installation! -----') class ExperimentHelper(): """ Helper class for dealing with results of libkinetics. Provides plotting and data output functionality for libkinetics.Experiment. """ def __init__(self, experiment, logger, unit, logx=False, logy=False): self.exp = experiment self.logger = logger self.logx = logx self.logy = logy self.unit = unit def linear_regression_function(self, slope, x, intercept): y = slope * x + intercept return y def plot_data(self, outpath): # iterate over all measurements for m in self.exp.measurements: # plot each measurement fig, ax = plt.subplots() ax.set_xlabel('Time') ax.set_ylabel('Raw Signal') ax_title = 'Linear regression {} {}'.format(m.concentration, m.concentration_unit) ax.set_title(ax_title) for r in m.replicates: ax.plot(r.x, r.y, linestyle='None', marker='o', ms=3, fillstyle='none', label='replicate #{}'.format(r.num)) y = self.linear_regression_function(r.fitresult['slope'], r.x, r.fitresult['intercept']) ax.plot(r.x, y, 'k-') ax.axvspan(m.xlim[0], m.xlim[1], facecolor='0.8', alpha=0.5) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.savefig('{}/fit_{}_{}.png'.format(outpath, m.concentration, m.concentration_unit), bbox_inches='tight') plt.close(fig) def plot_kinetics(self, outpath): exp = self.exp fig, ax = plt.subplots() ax.set_xlabel('c [{}]'.format(self.unit)) ax.set_ylabel('dA/dt [Au/s]') ax.set_title('Kinetics') if self.logx: ax.set_xscale('log') if self.logy: ax.set_yscale('log') ax.errorbar(exp.raw_kinetic_data['x'], exp.raw_kinetic_data['y'], yerr=exp.raw_kinetic_data['yerr'], fmt='ok', ms=3, fillstyle='none', label="Data with error") if exp.mm: y = exp.mm_kinetics_function(exp.mm['x'], exp.mm['vmax'], exp.mm['Km']) ax.plot(exp.mm['x'], y, 'b-', label="Michaelis-Menten") if exp.hill: y = exp.hill_kinetics_function(exp.hill['x'], exp.hill['vmax'], exp.hill['Kprime'], exp.hill['h']) ax.plot(exp.hill['x'], y, 'g-', label="Hill") ax.legend(loc='best', fancybox=True) plt.savefig('{}/kinetics.png'.format(outpath), bbox_inches='tight') plt.close(fig) def write_data(self, outpath): exp = self.exp with open('{}/results.csv'.format(outpath), 'w', newline='\n') as csvfile: writer = csv.writer(csvfile, dialect='excel-tab') writer.writerow(['LINEAR FITS']) writer.writerow([]) writer.writerow(['concentration', 'avg. slope', 'slope std_err', 'replicates (slope, intercept and r_squared)']) for m in exp.measurements: row = [m.concentration, m.avg_slope, m.avg_slope_err] for r in m.replicates: row.append(r.fitresult['slope']) row.append(r.fitresult['intercept']) row.append(r.fitresult['r_squared']) writer.writerow(row) writer.writerow([]) if exp.mm: self.logger.debug(' Writing Michaelis-Menten results.') writer.writerow(['MICHAELIS-MENTEN KINETICS']) writer.writerow(['', 'value', 'std']) writer.writerow(['vmax', exp.mm['vmax'], exp.mm['vmax_err']]) writer.writerow(['Kprime', exp.mm['Km'], exp.mm['Km_err']]) if exp.hill: self.logger.debug(' Writing Hill results.') writer.writerow([]) writer.writerow(['HILL KINETICS']) writer.writerow(['', 'value', 'std']) writer.writerow(['vmax', exp.hill['vmax'], exp.hill['vmax_err'] ]) writer.writerow(['Kprime', exp.hill['Kprime'], exp.hill['Kprime_err']]) writer.writerow(['h', exp.hill['h'], exp.hill['h_err']]) def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('-v', '--verbose', action='store_true', help='increase output verbosity') parser.add_argument('-r', '--replicates', action='store_true', help='fit kinetics to individual replicates') parser.add_argument('-nm', '--no-michaelis', action='store_true', help='do not compute michaelis-menten kinetics') parser.add_argument('-wh', '--hill', action='store_true', help='compute additional kinetics using Hill equation') parser.add_argument('-lx', '--log-x', action='store_true', help='x axis in kinetics is log-scaled') parser.add_argument('-ly', '--log-y', action='store_true', help='y axis in kinetics is log-scaled') parser.add_argument('start', type=np.float64, help='start of fitting window') parser.add_argument('end', type=np.float64, help='end of fitting window') parser.add_argument('input', type=str, help='directory containing input files in csv format') parser.add_argument('output', type=str, help='results will be written to this directory') parser.add_argument('unit', type=str, help='unit of concentrations') args = parser.parse_args() return args def initialize_logger(): """ Initialization of logging subsystem. Two logging handlers are brought up: 'fh' which logs to a log file and 'ch' which logs to standard output. If colorlog is installed, logging to console will be colored. Returns: logger: logging.Logger instance """ if COLORED_LOG: fmt = '%(log_color)s%(levelname)-8s%(reset)s %(message)s' formatter = ColoredFormatter(fmt, datefmt=None, reset=True, log_colors={ 'DEBUG': 'cyan', 'INFO': 'green', 'WARNING': 'yellow', 'ERROR': 'red', 'CRITICAL': 'red,bg_white' }, secondary_log_colors={}, style='%') else: fmt = '%(levelname)-8s%(message)s' formatter = logging.Formatter(fmt, datefmt=None, style='%') logging.captureWarnings(True) logger = logging.getLogger('pyKinetics-cli') logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) ch.setFormatter(formatter) logger.addHandler(ch) try: log_filename = 'pyKinetics-cli.log' fh = logging.FileHandler(log_filename, 'w') fh.setLevel(logging.INFO) logger.addHandler(fh) except IOError as error: logger.warning('Cannot create log file! Run pyKinetics-cli' 'from a directory to which you have write access.') logger.warning(error.msg) pass return logger def main(): """ Main method of pyKinetics. Will be executed when analyze-cli.py is started from the command line. """ # parse command line arguments args = parse_arguments() # initialize logger logger = initialize_logger() # grab fitting window from provided arguments fitting_window = (args.start, args.end) if args.log_x: logx = args.log_x else: logx = False if args.log_y: logy = args.log_y else: logy = False if args.no_michaelis: no_mm = args.no_michaelis else: no_mm = False if args.hill: do_hill = args.hill else: do_hill = False if args.replicates: fit_to_replicates = args.replicates else: fit_to_replicates = False try: input_path = Path(args.input).resolve() except FileNotFoundError: logger.critical('Path containing input data ' 'not found: {}'.format(args.input)) raise try: output_path = Path(args.output).resolve() except FileNotFoundError: logger.critical('Path for writing results ' 'not found: {}'.format(args.output)) raise if output_path.is_dir(): if input_path.is_dir(): logger.info('Collecting data files') data_files = sorted(input_path.glob('**/*.csv')) msg = 'Calculating kinetics' if do_hill: msg = '{} including Hill kinetics'.format(msg) logger.info('{}'.format(msg)) exp = libkinetics.Experiment(data_files, fitting_window, do_hill=do_hill, no_mm=no_mm, logger=logger, fit_to_replicates=fit_to_replicates) ehlp = ExperimentHelper(exp, logger, args.unit, logx=logx, logy=logy) logger.info('Plotting linear fits') ehlp.plot_data(str(output_path)) logger.info('Plotting kinetic fit(s)') ehlp.plot_kinetics(str(output_path)) logger.info('Writing results to results.csv') ehlp.write_data(str(output_path)) logger.info('Finished!') else: msg = '{} is not a directory!'.format(input_path) logger.critical('CRITICAL: '.format(msg)) raise ValueError(msg) else: msg = '{} is not a directory!'.format(output_path) logger.critical('CRITICAL: '.format(msg)) raise ValueError(msg) if __name__ == "__main__": main()