1
0
Fork 0
mirror of https://github.com/Athemis/pyKinetics.git synced 2025-04-04 14:36:03 +00:00
pyKinetics/analyze-cli.py

385 lines
14 KiB
Python
Executable file

#!/usr/bin/python
# -*- coding: utf-8 -*-
import argparse
import logging
import csv
import sys
from pathlib import Path
# check for third party modules. Matplotlib and NumPy are essential
try:
import matplotlib.pyplot as plt
except ImportError:
print('----- Matplotlib must be installed! -----')
try:
import numpy as np
except ImportError:
print('----- NumPy must be installed! -----')
# colorlog is optional; inform user of non-colored output if not found
try:
from colorlog import ColoredFormatter
COLORED_LOG = True
except ImportError:
COLORED_LOG = False
print('----- Module colorlog not found. Console output will not be '
'colored! -----')
sys.exc_clear()
# check for libkinetics; if not found, there is something wrong with the
# installation if pyKinetics
try:
import libkinetics
except ImportError:
print('---- Cannot find libkinetics! Check your installation! -----')
class ExperimentHelper():
"""
Helper class for dealing with results of libkinetics.
Provides plotting and data output functionality for libkinetics.Experiment.
"""
def __init__(self, experiment, logger, unit, logx=False, logy=False):
self.exp = experiment
self.logger = logger
self.logx = logx
self.logy = logy
self.unit = unit
self.colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
def linear_regression_function(self, slope, x, intercept):
y = slope * x + intercept
return y
def plot_data(self, outpath):
# iterate over all measurements
for m in self.exp.measurements:
# plot each measurement
fig, ax = plt.subplots()
ax.set_xlabel('Time')
ax.set_ylabel('Raw Signal')
ax_title = 'Linear regression {} {}'.format(m.concentration,
m.concentration_unit)
ax.set_title(ax_title)
color_index = 0
for r in m.replicates:
# TODO: If number of colors exceeds predefined colors, calculate a proper palette
if color_index < len(self.colors):
color = self.colors[color_index]
else:
color = 'k'
ax.plot(r.x,
r.y,
'{}o'.format(color),
linestyle='None',
ms=3,
fillstyle='none',
label='replicate #{}'.format(r.num))
y = self.linear_regression_function(r.fitresult['slope'], r.x,
r.fitresult['intercept'])
ax.plot(r.x, y, '{}-'.format(color), label='linear fit #{}'.format(r.num))
ax.axvspan(m.xlim[0], m.xlim[1], facecolor='0.8', alpha=0.5)
color_index += 1
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.savefig('{}/fit_{}_{}.png'.format(outpath, m.concentration,
m.concentration_unit),
bbox_inches='tight')
plt.close(fig)
def plot_kinetics(self, outpath):
exp = self.exp
fig, ax = plt.subplots()
ax.set_xlabel('c [{}]'.format(self.unit))
ax.set_ylabel('dA/dt [Au/s]')
ax.set_title('Kinetics')
if self.logx:
if 0 in exp.raw_kinetic_data['x']:
index = exp.raw_kinetic_data['x'].index(0)
exp.raw_kinetic_data['x'].pop(index)
exp.raw_kinetic_data['y'].pop(index)
exp.raw_kinetic_data['yerr'].pop(index)
self.logger.warn(' Data in x contains zero values.')
ax.set_xscale('log')
if self.logy:
if 0 in exp.raw_kinetic_data['y']:
index = exp.raw_kinetic_data['y'].index(0)
exp.raw_kinetic_data['x'].pop(index)
exp.raw_kinetic_data['y'].pop(index)
exp.raw_kinetic_data['yerr'](index)
self.logger.warn(' Data in y contains zero values.')
ax.set_yscale('log')
ax.errorbar(exp.raw_kinetic_data['x'],
exp.raw_kinetic_data['y'],
yerr=exp.raw_kinetic_data['yerr'],
fmt='ok',
ms=3,
fillstyle='none',
label="Data with error")
if exp.mm:
y = exp.mm_kinetics_function(exp.mm['x'], exp.mm['vmax'],
exp.mm['Km'])
ax.plot(exp.mm['x'], y, 'b-', label="Michaelis-Menten")
if exp.hill:
y = exp.hill_kinetics_function(exp.hill['x'], exp.hill['vmax'],
exp.hill['Kprime'], exp.hill['h'])
ax.plot(exp.hill['x'], y, 'g-', label="Hill")
ax.legend(loc='best', fancybox=True)
plt.savefig('{}/kinetics.png'.format(outpath), bbox_inches='tight')
plt.close(fig)
def write_data(self, outpath):
exp = self.exp
with open('{}/results.csv'.format(outpath),
'w',
newline='\n') as csvfile:
writer = csv.writer(csvfile, dialect='excel-tab')
writer.writerow(['LINEAR FITS'])
writer.writerow([])
writer.writerow(['concentration', 'avg. slope', 'slope std_err',
'replicates (slope, intercept and r_squared)'])
for m in exp.measurements:
row = [m.concentration, m.avg_slope, m.avg_slope_err]
for r in m.replicates:
row.append(r.fitresult['slope'])
row.append(r.fitresult['intercept'])
row.append(r.fitresult['r_squared'])
writer.writerow(row)
writer.writerow([])
if exp.mm:
self.logger.debug(' Writing Michaelis-Menten results.')
writer.writerow(['MICHAELIS-MENTEN KINETICS'])
writer.writerow(['', 'value', 'std'])
writer.writerow(['vmax', exp.mm['vmax'], exp.mm['vmax_err']])
writer.writerow(['Kprime', exp.mm['Km'], exp.mm['Km_err']])
if exp.hill:
self.logger.debug(' Writing Hill results.')
writer.writerow([])
writer.writerow(['HILL KINETICS'])
writer.writerow(['', 'value', 'std'])
writer.writerow(['vmax', exp.hill['vmax'], exp.hill['vmax_err']
])
writer.writerow(['Kprime', exp.hill['Kprime'],
exp.hill['Kprime_err']])
writer.writerow(['h', exp.hill['h'], exp.hill['h_err']])
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('-v',
'--verbose',
action='store_true',
help='increase output verbosity')
parser.add_argument('-r',
'--replicates',
action='store_true',
help='fit kinetics to individual replicates')
parser.add_argument('-ep',
'--end-point',
action='store_true',
help='use end point determination instead of linear fit')
parser.add_argument('-nm',
'--no-michaelis',
action='store_true',
help='do not compute michaelis-menten kinetics')
parser.add_argument('-wh',
'--hill',
action='store_true',
help='compute additional kinetics using Hill equation')
parser.add_argument('-lx',
'--log-x',
action='store_true',
help='x axis in kinetics is log-scaled')
parser.add_argument('-ly',
'--log-y',
action='store_true',
help='y axis in kinetics is log-scaled')
parser.add_argument('start',
type=np.float64,
help='start of fitting window')
parser.add_argument('end', type=np.float64, help='end of fitting window')
parser.add_argument('input',
type=str,
help='directory containing input files in csv format')
parser.add_argument('output',
type=str,
help='results will be written to this directory')
parser.add_argument('unit',
type=str,
help='unit of concentrations')
args = parser.parse_args()
return args
def initialize_logger():
"""
Initialization of logging subsystem.
Two logging handlers are brought up: 'fh' which logs to a log file and
'ch' which logs to standard output. If colorlog is installed, logging
to console will be colored.
Returns:
logger: logging.Logger instance
"""
if COLORED_LOG:
fmt = '%(log_color)s%(levelname)-8s%(reset)s %(message)s'
formatter = ColoredFormatter(fmt,
datefmt=None,
reset=True,
log_colors={
'DEBUG': 'cyan',
'INFO': 'green',
'WARNING': 'yellow',
'ERROR': 'red',
'CRITICAL': 'red,bg_white'
},
secondary_log_colors={},
style='%')
else:
fmt = '%(levelname)-8s%(message)s'
formatter = logging.Formatter(fmt, datefmt=None, style='%')
logging.captureWarnings(True)
logger = logging.getLogger('pyKinetics-cli')
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
ch.setFormatter(formatter)
logger.addHandler(ch)
try:
log_filename = 'pyKinetics-cli.log'
fh = logging.FileHandler(log_filename, 'w')
fh.setLevel(logging.INFO)
logger.addHandler(fh)
except IOError as error:
logger.warning('Cannot create log file! Run pyKinetics-cli'
'from a directory to which you have write access.')
logger.warning(error.msg)
pass
return logger
def main():
"""
Main method of pyKinetics.
Will be executed when analyze-cli.py is started from the command line.
"""
# parse command line arguments
args = parse_arguments()
# initialize logger
logger = initialize_logger()
# grab fitting window from provided arguments
fitting_window = (args.start, args.end)
# use end point determination
if args.end_point:
end_point = args.end_point
else:
end_point = False
# scaling of axes in kinetics plot
if args.log_x:
logx = args.log_x
else:
logx = False
if args.log_y:
logy = args.log_y
else:
logy = False
# suppress calculation of Michaelis-Menten kinetics
if args.no_michaelis:
no_mm = args.no_michaelis
else:
no_mm = False
# do Hill kinetics
if args.hill:
do_hill = args.hill
else:
do_hill = False
# perform global fit of kinetic function(s) to all replicates
# instead of their means
if args.replicates:
fit_to_replicates = args.replicates
else:
fit_to_replicates = False
try:
input_path = Path(args.input).resolve()
except FileNotFoundError:
logger.critical('Path containing input data '
'not found: {}'.format(args.input))
raise
try:
output_path = Path(args.output).resolve()
except FileNotFoundError:
logger.critical('Path for writing results '
'not found: {}'.format(args.output))
raise
if output_path.is_dir():
if input_path.is_dir():
logger.info('Collecting data files')
data_files = sorted(input_path.glob('**/*.csv'))
msg = 'Calculating kinetics'
if do_hill:
msg = '{} including Hill kinetics'.format(msg)
logger.info('{}'.format(msg))
exp = libkinetics.Experiment(data_files,
fitting_window,
end_point=end_point,
do_hill=do_hill,
no_mm=no_mm,
logger=logger,
fit_to_replicates=fit_to_replicates)
ehlp = ExperimentHelper(exp, logger, args.unit, logx=logx, logy=logy)
if not end_point:
logger.info('Plotting linear fits')
ehlp.plot_data(str(output_path))
logger.info('Writing results to results.csv')
ehlp.write_data(str(output_path))
logger.info('Plotting kinetic fit(s)')
ehlp.plot_kinetics(str(output_path))
logger.info('Finished!')
else:
msg = '{} is not a directory!'.format(input_path)
logger.critical('CRITICAL: '.format(msg))
raise ValueError(msg)
else:
msg = '{} is not a directory!'.format(output_path)
logger.critical('CRITICAL: {}'.format(msg))
raise ValueError(msg)
if __name__ == "__main__":
main()