1
0
Fork 0
mirror of https://github.com/Athemis/pyKinetics.git synced 2025-04-05 06:56:02 +00:00
pyKinetics/analyze-cli.py

238 lines
8.5 KiB
Python
Executable file

#!/usr/bin/python
# -*- coding: utf-8 -*-
import argparse
import logging
import csv
import matplotlib.pyplot as plt
from pathlib import Path
from colorlog import ColoredFormatter
import libkinetics
class ExperimentHelper():
def __init__(self, experiment, logger):
self.exp = experiment
self.logger = logger
def linear_regression_function(self, slope, x, intercept):
y = slope * x + intercept
return y
def plot_data(self, exp, outpath):
# iterate over all measurements
for m in exp.measurements:
# plot each measurement
fig, ax = plt.subplots()
ax.set_xlabel('Time')
ax.set_ylabel('Raw Signal')
ax_title = 'Linear regression {} {}'.format(m.concentration,
m.concentration_unit)
ax.set_title(ax_title)
for r in m.replicates:
ax.plot(r.x, r.y, linestyle='None',
marker='o', ms=3, fillstyle='none')
y = self.linear_regression_function(r.fitresult['slope'],
r.x,
r.fitresult['intercept'])
ax.plot(r.x, y, 'k-')
ax.axvspan(m.xlim[0], m.xlim[1], facecolor='0.8', alpha=0.5)
plt.savefig('{}/fit_{}_{}.png'.format(outpath,
m.concentration,
m.concentration_unit),
bbox_inches='tight')
plt.close(fig)
def plot_kinetics(self, exp, outpath):
fig, ax = plt.subplots()
ax.set_xlabel('c [mM]')
ax.set_ylabel('dA/dt [Au/s]')
ax.set_title('Kinetics')
ax.errorbar(exp.raw_kinetic_data['x'],
exp.raw_kinetic_data['y'],
yerr=exp.raw_kinetic_data['yerr'],
fmt='ok', ms=3, fillstyle='none', label="Data with error")
if exp.mm:
y = exp.mm_kinetics_function(exp.mm['x'],
exp.mm['vmax'],
exp.mm['Km'])
ax.plot(exp.mm['x'], y, 'b-', label="Michaelis-Menten")
if exp.hill:
y = exp.hill_kinetics_function(exp.hill['x'],
exp.hill['vmax'],
exp.hill['Kprime'],
exp.hill['h'])
ax.plot(exp.hill['x'], y, 'g-', label="Hill")
ax.legend(loc='best', fancybox=True)
plt.savefig('{}/kinetics.png'.format(outpath), bbox_inches='tight')
plt.close(fig)
def write_data(self, exp, outpath):
with open('{}/results.csv'.format(outpath),
'w',
newline='\n') as csvfile:
writer = csv.writer(csvfile, dialect='excel-tab')
writer.writerow(['# LINEAR FITS'])
writer.writerow([])
writer.writerow(['# concentration',
'avg. slope',
'slope std_err',
'replicates (slope, intercept and r value)'])
for m in exp.measurements:
row = [m.concentration, m.avg_slope, m.avg_slope_err]
for r in m.replicates:
row.append(r.fitresult['slope'])
row.append(r.fitresult['intercept'])
row.append(r.fitresult['r_value'])
writer.writerow(row)
writer.writerow([])
if exp.mm:
writer.writerow(['# MICHAELIS-MENTEN KINETICS'])
writer.writerow(['# vmax', 'Km'])
writer.writerow([exp.mm['vmax'], exp.mm['Km']])
if exp.hill:
writer.writerow(['# HILL KINETICS'])
writer.writerow(['# vmax', 'Kprime', 'h'])
writer.writerow([exp.hill['vmax'], exp.hill['Kprime'],
exp.hill['h']])
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('-v',
'--verbose',
action='store_true',
help='increase output verbosity')
parser.add_argument('-r',
'--replicates',
action='store_true',
help='fit kinetics to individual replicates')
parser.add_argument('-wh',
'--hill',
action='store_true',
help='compute additional kinetics using Hill equation')
parser.add_argument('input',
type=str,
help='directory containing input files in csv format')
parser.add_argument('output',
type=str,
help='results will be written to this directory')
args = parser.parse_args()
return args
def initialize_logger():
"""
Initialization of logging subsystem. Two logging handlers are brought up:
'fh' which logs to a log file and 'ch' which logs to standard output.
:return logger: returns a logger instance
"""
fmt = '%(log_color)s%(levelname)-8s%(reset)s %(message)s'
formatter = ColoredFormatter(fmt,
datefmt=None,
reset=True,
log_colors={'DEBUG': 'cyan',
'INFO': 'green',
'WARNING': 'yellow',
'ERROR': 'red',
'CRITICAL': 'red,bg_white'},
secondary_log_colors={},
style='%')
logging.captureWarnings(True)
logger = logging.getLogger('pyKinetics-cli')
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
ch.setFormatter(formatter)
logger.addHandler(ch)
try:
log_filename = 'pyKinetics-cli.log'
fh = logging.FileHandler(log_filename, 'w')
fh.setLevel(logging.INFO)
logger.addHandler(fh)
except IOError as error:
logger.warning('Cannot create log file! Run pyKinetics-cli'
'from a directory to which you have write access.')
logger.warning(error.msg)
pass
return logger
def main():
# parse command line arguments
args = parse_arguments()
# initialize logger
logger = initialize_logger()
if args.hill:
do_hill = args.hill
else:
do_hill = False
if args.replicates:
fit_to_replicates = args.replicates
else:
fit_to_replicates = False
try:
input_path = Path(args.input).resolve()
except FileNotFoundError:
logger.critical('Path containing input data '
'not found: {}'.format(args.input))
raise
try:
output_path = Path(args.output).resolve()
except FileNotFoundError:
logger.critical('Path for writing results '
'not found: {}'.format(args.output))
raise
if output_path.is_dir():
if input_path.is_dir():
logger.info('Collecting data files')
data_files = sorted(input_path.glob('**/*.csv'))
msg = 'Calculating kinetics'
if do_hill:
msg = '{} including Hill kinetics'.format(msg)
logger.info('{}'.format(msg))
exp = libkinetics.Experiment(data_files,
(10, 25),
do_hill=do_hill,
logger=logger,
fit_to_replicates=fit_to_replicates)
ehlp = ExperimentHelper(exp, logger)
logger.info('Plotting linear fits to data')
ehlp.plot_data(exp, str(output_path))
logger.info('Plotting kinetics fit(s)')
ehlp.plot_kinetics(exp, str(output_path))
logger.info('Writing results to results.csv')
ehlp.write_data(exp, str(output_path))
logger.info('Finished!')
else:
msg = '{} is not a directory!'.format(input_path)
logger.critical('CRITICAL: '.format(msg))
raise ValueError(msg)
else:
msg = '{} is not a directory!'.format(output_path)
logger.critical('CRITICAL: '.format(msg))
raise ValueError(msg)
if __name__ == "__main__":
main()