mirror of
https://github.com/Athemis/pyKinetics.git
synced 2025-04-05 14:56:02 +00:00
261 lines
9 KiB
Python
261 lines
9 KiB
Python
#!/usr/bin/python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
from scipy import stats, optimize
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import csv
|
|
|
|
|
|
class Replicate():
|
|
|
|
def __init__(self, x, y, owner):
|
|
self.logger = owner.logger
|
|
self.x = x
|
|
self.y = y
|
|
self.owner = owner
|
|
self.xlim = owner.xlim
|
|
self.fitresult = self.fit()
|
|
|
|
def fit(self):
|
|
ind_min_max = np.where((self.x >= self.xlim[0]) &
|
|
(self.x <= self.xlim[1]))
|
|
x_for_fit = np.take(self.x, ind_min_max)
|
|
y_for_fit = np.take(self.y, ind_min_max)
|
|
|
|
(slope, intercept,
|
|
r_value,
|
|
p_value,
|
|
std_err) = stats.linregress(x_for_fit, y_for_fit)
|
|
|
|
return {'slope': slope,
|
|
'intercept': intercept,
|
|
'r_value': r_value,
|
|
'p_value': p_value,
|
|
'std_err': std_err}
|
|
|
|
|
|
class Measurement():
|
|
|
|
def __init__(self, x, y, conc, conc_unit, owner):
|
|
self.logger = owner.logger
|
|
self.concentration = float(conc)
|
|
self.concentration_unit = conc_unit
|
|
self.x = x
|
|
self.y = y
|
|
self.replicates = []
|
|
self.owner = owner
|
|
self.xlim = owner.xlim
|
|
self.slopes = []
|
|
self.avg_slope = None
|
|
self.avg_slope_err = None
|
|
|
|
# extract number of replicates (num_replicates)
|
|
length_x, num_replicates = self.y.shape
|
|
|
|
for n in range(num_replicates):
|
|
self.replicates.append(Replicate(self.x, self.y[:, n:n+1], self))
|
|
|
|
for r in self.replicates:
|
|
self.slopes.append(r.fitresult['slope'])
|
|
|
|
self.avg_slope = np.average(self.slopes)
|
|
self.avg_slope_err = np.std(self.slopes)
|
|
|
|
def plot(self, outpath):
|
|
fig, ax = plt.subplots()
|
|
ax.set_xlabel('Time [s]')
|
|
ax.set_ylabel('Absorption (340 nm) [Au]')
|
|
ax.set_title('Linear regression {} {}'.format(self.concentration,
|
|
self.concentration_unit))
|
|
|
|
for r in self.replicates:
|
|
ax.plot(r.x, r.y, linestyle='None',
|
|
marker='o', ms=3, fillstyle='none')
|
|
ax.plot(r.x, r.fitresult['slope']*r.x+r.fitresult['intercept'],
|
|
'k-')
|
|
ax.axvspan(self.xlim[0], self.xlim[1], facecolor='0.8', alpha=0.5)
|
|
|
|
plt.savefig('{}/fit_{}_{}.png'.format(outpath,
|
|
self.concentration,
|
|
self.concentration_unit),
|
|
bbox_inches='tight')
|
|
plt.close(fig)
|
|
|
|
def get_results(self):
|
|
results = []
|
|
for r in self.replicates:
|
|
results.append(r.fitresult)
|
|
|
|
return results
|
|
|
|
|
|
class Experiment():
|
|
|
|
def __init__(self, data_files, xlim, do_hill=False, logger=None):
|
|
|
|
self.logger = logger
|
|
|
|
# collction of indepentend measurements
|
|
self.measurements = []
|
|
# dictionary to store data for the kinetics calculation
|
|
self.raw_kinetic_data = {'x': [],
|
|
'y': [],
|
|
'yerr': []}
|
|
self.xlim = xlim
|
|
|
|
# parse data files and generate measurements
|
|
for csvfile in data_files:
|
|
tmp = np.genfromtxt(str(csvfile), comments='#')
|
|
with open(str(csvfile)) as datafile:
|
|
head = [next(datafile) for x in range(2)]
|
|
# extract concentration and unit from header
|
|
# TODO: move unit to parameter
|
|
# TODO: More error-proof header detection
|
|
conc = head[0].strip('#').strip()
|
|
unit = head[1].strip('#').strip()
|
|
# split x and y data apart
|
|
# first column is x data (time); following columns contain
|
|
# replicates of y data (absorption, etc.)
|
|
x = tmp[:, 0]
|
|
y = tmp[:, 1:]
|
|
# create new measurement and append to list
|
|
measurement = Measurement(x, y, conc, unit, self)
|
|
self.measurements.append(measurement)
|
|
|
|
# iterate over all measurements
|
|
for m in self.measurements:
|
|
# extract relevant data for kinetics calculation (concentration,
|
|
# average slope and error)
|
|
self.raw_kinetic_data['x'].append(m.concentration)
|
|
self.raw_kinetic_data['y'].append(np.absolute(m.avg_slope))
|
|
self.raw_kinetic_data['yerr'].append(m.avg_slope_err)
|
|
|
|
# calculate kinetics
|
|
self.mm = self.do_mm_kinetics()
|
|
if do_hill:
|
|
self.hill = self.do_hill_kinetics()
|
|
else:
|
|
self.hill = None
|
|
|
|
def plot_data(self, outpath):
|
|
# iterate over all measurements
|
|
for m in self.measurements:
|
|
# plot each measurement
|
|
m.plot(outpath)
|
|
|
|
def mm_kinetics_function(self, x, vmax, Km):
|
|
v = (vmax*x)/(Km+x)
|
|
return v
|
|
|
|
def hill_kinetics_function(self, x, vmax, Kprime, h):
|
|
v = (vmax*(x**h))/(Kprime+(x**h))
|
|
return v
|
|
|
|
def do_mm_kinetics(self):
|
|
try:
|
|
popt, pconv = optimize.curve_fit(self.mm_kinetics_function,
|
|
self.raw_kinetic_data['x'],
|
|
self.raw_kinetic_data['y'])
|
|
|
|
perr = np.sqrt(np.diag(pconv))
|
|
vmax = popt[0]
|
|
Km = popt[1]
|
|
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
|
|
|
|
return {'vmax': float(vmax),
|
|
'Km': float(Km),
|
|
'perr': perr,
|
|
'x': x}
|
|
except:
|
|
msg = 'Calculation of Michaelis-Menten kinetics failed!'
|
|
if self.logger:
|
|
self.logger.error('ERROR: {}'.format(msg))
|
|
else:
|
|
print(msg)
|
|
return None
|
|
|
|
def do_hill_kinetics(self):
|
|
try:
|
|
popt, pconv = optimize.curve_fit(self.hill_kinetics_function,
|
|
self.raw_kinetic_data['x'],
|
|
self.raw_kinetic_data['y'])
|
|
|
|
perr = np.sqrt(np.diag(pconv))
|
|
vmax = popt[0]
|
|
Kprime = popt[1]
|
|
h = popt[2]
|
|
|
|
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
|
|
|
|
return {'vmax': float(vmax),
|
|
'Kprime': float(Kprime),
|
|
'perr': perr,
|
|
'h': h,
|
|
'x': x}
|
|
except:
|
|
msg = 'Calculation of Hill kinetics failed!'
|
|
if self.logger:
|
|
self.logger.error('ERROR: {}'.format(msg))
|
|
else:
|
|
print(msg)
|
|
return None
|
|
|
|
def plot_kinetics(self, outpath):
|
|
fig, ax = plt.subplots()
|
|
ax.set_xlabel('c [mM]')
|
|
ax.set_ylabel('dA/dt [Au/s]')
|
|
ax.set_title('Kinetics')
|
|
|
|
ax.errorbar(self.raw_kinetic_data['x'],
|
|
self.raw_kinetic_data['y'],
|
|
yerr=self.raw_kinetic_data['yerr'],
|
|
fmt='ok', ms=3, fillstyle='none', label="Data with error")
|
|
|
|
if self.mm:
|
|
y = self.mm_kinetics_function(self.mm['x'],
|
|
self.mm['vmax'],
|
|
self.mm['Km'])
|
|
ax.plot(self.mm['x'], y, 'b-', label="Michaelis-Menten")
|
|
if self.hill:
|
|
y = self.hill_kinetics_function(self.hill['x'],
|
|
self.hill['vmax'],
|
|
self.hill['Kprime'],
|
|
self.hill['h'])
|
|
ax.plot(self.hill['x'], y, 'g-', label="Hill")
|
|
|
|
ax.legend(loc='best', fancybox=True)
|
|
plt.savefig('{}/kinetics.png'.format(outpath), bbox_inches='tight')
|
|
plt.close(fig)
|
|
|
|
def write_data(self, outpath):
|
|
|
|
with open('{}/results.csv'.format(outpath),
|
|
'w',
|
|
newline='\n') as csvfile:
|
|
|
|
writer = csv.writer(csvfile, dialect='excel-tab')
|
|
writer.writerow(['# LINEAR FITS'])
|
|
writer.writerow([])
|
|
writer.writerow(['# concentration',
|
|
'avg. slope',
|
|
'slope std_err',
|
|
'replicates (slope, intercept and r value)'])
|
|
for m in self.measurements:
|
|
row = [m.concentration, m.avg_slope, m.avg_slope_err]
|
|
for r in m.replicates:
|
|
row.append(r.fitresult['slope'])
|
|
row.append(r.fitresult['intercept'])
|
|
row.append(r.fitresult['r_value'])
|
|
writer.writerow(row)
|
|
|
|
writer.writerow([])
|
|
if self.mm:
|
|
writer.writerow(['# MICHAELIS-MENTEN KINETICS'])
|
|
writer.writerow(['# vmax', 'Km'])
|
|
writer.writerow([self.mm['vmax'], self.mm['Km']])
|
|
if self.hill:
|
|
writer.writerow(['# HILL KINETICS'])
|
|
writer.writerow(['# vmax', 'Kprime', 'h'])
|
|
writer.writerow([self.hill['vmax'], self.hill['Kprime'],
|
|
self.hill['h']])
|