1
0
Fork 0
mirror of https://github.com/Athemis/pyKinetics.git synced 2025-04-05 14:56:02 +00:00
pyKinetics/libkinetics/__init__.py

372 lines
12 KiB
Python

#!/usr/bin/python
# -*- coding: utf-8 -*-
from scipy import stats, optimize
import numpy as np
import logging
import warnings
class Error(Exception):
"""
Main Error class derived from Exception.
"""
pass
class FitError(Error):
"""
Exception raised if fitting fails.
"""
pass
class Replicate():
"""
Represents a single replicate within a measurement
"""
def __init__(self, num, xy, owner):
self.logger = owner.logger
self.num = num + 1
self.x, self.y = xy
self.owner = owner
self.xlim = owner.xlim
self.fitresult = self.fit()
def fit(self):
ind_min_max = np.where((self.x >= self.xlim[0]) &
(self.x <= self.xlim[1]))
x_for_fit = np.take(self.x, ind_min_max)
y_for_fit = np.take(self.y, ind_min_max)
# ignore warnings about invalid values in sqrt during linear fitting
# they occur frequently and will just clutter the cli
warnings.filterwarnings('ignore',
category=RuntimeWarning,
message='invalid value encountered in sqrt')
(slope, intercept,
r_value,
p_value,
std_err) = stats.linregress(x_for_fit, y_for_fit)
r_squared = r_value**2
conc = '{} {}'.format(self.owner.concentration,
self.owner.concentration_unit)
self.logger.info('Linear fit for {} #{}:'.format(conc, self.num))
if r_squared < 0.9 and r_squared > 0.7:
msg = ' r-squared: {} < 0.9; Check fit manually!'
self.logger.warning(msg.format(round(r_squared, 4)))
elif r_squared < 0.7:
msg = ' r-squared: {} < 0.7; Linear fit probably failed!'
self.logger.warning(msg.format(round(r_squared, 4)))
else:
msg = ' r-squared: {}'
self.logger.info(msg.format(round(r_squared, 4)))
self.logger.info(' slope: {}'.format(slope))
if slope < 0:
self.logger.info(' Slope is negative. Will use absolute '
'value for further calculations!')
self.logger.info(' intercept: {}'.format(slope))
return {'slope': slope,
'intercept': intercept,
'r_value': r_value,
'r_squared': r_squared,
'p_value': p_value,
'std_err': std_err}
class Measurement():
"""
Represents a single measurement within an experiment.
"""
def __init__(self, xy, conc, conc_unit, owner):
self.logger = owner.logger
self.concentration = float(conc)
self.concentration_unit = conc_unit
self.x, self.y = xy
self.replicates = []
self.owner = owner
self.xlim = owner.xlim
self.slopes = []
self.avg_slope = None
self.avg_slope_err = None
# extract number of replicates (num_replicates)
length_x, num_replicates = self.y.shape
for n in range(num_replicates):
self.replicates.append(Replicate(n,
(self.x, self.y[:, n:n+1]),
self))
for r in self.replicates:
self.slopes.append(r.fitresult['slope'])
self.avg_slope = np.average(self.slopes)
self.avg_slope_err = np.std(self.slopes)
self.logger.info('Average slope: {} ± {}'.format(self.avg_slope,
self.avg_slope_err))
if self.avg_slope < 0:
self.logger.info('Avererage slope is negative. Will use '
'absolute value for further calculations!')
self.logger.info('-----')
def get_results(self):
results = []
for r in self.replicates:
results.append(r.fitresult)
return results
class Experiment():
"""
Represents the actual experiment.
Representation of a kinetics experiment. It consists of multiple
objects of type Measurement.
Attributes:
logger: logging.Logger instance that is used for logging to console
and log file.
measurements: array_like
list of individual measurements of the experiment.
Usually defined by different substrate concentrations.
fit_to_replicates: boolean
whether to fit to individual replicates instead to the average of
each measurement.
raw_kinetic_data: dictionary
storing x, y and std_err of each measurement for fitting kinetic
curves.
xlim: array_like
lower and upper bounds for calculating the v0 linear fit.
"""
def __init__(self, data_files, xlim, do_hill=False,
fit_to_replicates=False, logger=None):
"""
Inits Experiment class with experimental parameters
This is the only class you should have to use directly in your program.
Instances of Measurement and Replicate objects are created
automatically using the provided data files.
Args:
data_files: list containing csv-formatted data files
xlim: tuple of float values defining the lower and upper bound for
linear fitting of v0
do_hill: boolean to define whether to fit Hill-type kinetics in
addition to Michaelis-Menten kinetics. Defaults to False
fit_to_replicates: boolean to define wheter to fit to individual
replicates instead of the avarage slope. Defaults to False
logger: logging.Logger instance. If not given, a new logger is
created
"""
# check if a logger was handed over; if not, create a new instance
if logger:
self.logger = logger
else:
self.logger = logging.getLogger(__name__)
# collction of indepentend measurements
self.measurements = []
self.fit_to_replicates = fit_to_replicates
# dictionary to store data for the kinetics calculation
self.raw_kinetic_data = {'x': [],
'y': [],
'yerr': []}
self.xlim = xlim
# parse data files and generate measurements
for csvfile in data_files:
tmp = np.genfromtxt(str(csvfile), comments='#')
with open(str(csvfile)) as datafile:
head = [next(datafile) for x in range(2)]
# extract concentration and unit from header
# TODO: move unit to parameter
# TODO: More error-proof header detection
conc = head[0].strip('#').strip()
unit = head[1].strip('#').strip()
# split x and y data apart
# first column is x data (time); following columns contain
# replicates of y data (absorption, etc.)
x = tmp[:, 0]
y = tmp[:, 1:]
# create new measurement and append to list
measurement = Measurement((x, y), conc, unit, self)
self.measurements.append(measurement)
# iterate over all measurements
for m in self.measurements:
if self.fit_to_replicates:
for r in m.replicates:
self.raw_kinetic_data['x'].append(m.concentration)
self.raw_kinetic_data['y'].append(
np.absolute(r.fitresult['slope']))
self.raw_kinetic_data['yerr'].append(
r.fitresult['std_err'])
else:
# extract relevant data for kinetics calculation
# (concentration, average slope and error)
self.raw_kinetic_data['x'].append(m.concentration)
self.raw_kinetic_data['y'].append(np.absolute(m.avg_slope))
self.raw_kinetic_data['yerr'].append(m.avg_slope_err)
# calculate kinetics
self.mm = self.do_mm_kinetics()
if do_hill:
self.hill = self.do_hill_kinetics()
else:
self.hill = None
def mm_kinetics_function(self, x, vmax, Km):
"""
Michaelis-Menten function.
Classical Michaelis-Menten enzyme kinetics function.
Args:
x: float
concentration at velocity v
vmax: float
maximum velocity
Km: float
Michaelis constant
Returns:
v: float
velocity at given concentration x
"""
v = (vmax*x)/(Km+x)
return v
def hill_kinetics_function(self, x, vmax, Kprime, h):
"""
Hill function.
Hill function for enzyme kinetics with cooperativity.
Args:
x: float
concentration at velocity v.
vmax: float
maximum velocity.
Kprime: float
kinetics constant related to Michaelis constant.
h: float
hill slope; if h=1, Hill function is identical to
Michaelis-Menten function.
Returns:
v: float
velocity at given concentration x
"""
v = (vmax*(x**h))/(Kprime+(x**h))
return v
def do_mm_kinetics(self):
"""
Calculates Michaelis-Menten kinetics.
Returns:
On success, returns a dictionary containing the kinetic parameters
and their errors:
{'vmax': float,
'Km': float,
'vmax_err': float,
'Km_err': float,
'x': array_like}
Raises:
FitError if fitting fails.
"""
try:
popt, pconv = optimize.curve_fit(self.mm_kinetics_function,
self.raw_kinetic_data['x'],
self.raw_kinetic_data['y'])
except ValueError:
msg = ('Calculation of Michaelis-Menten kinetics failed! Your '
'input data (either x or y) contain empty (NaN) values!')
if self.logger:
self.logger.error('{}'.format(msg))
raise FitError(msg)
perr = np.sqrt(np.diag(pconv))
vmax = popt[0]
Km = popt[1]
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
self.logger.info('Michaelis-Menten Kinetics:')
self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0]))
self.logger.info(' Km: {} ± {}'.format(Km, perr[1]))
return {'vmax': np.float(vmax),
'Km': np.float(Km),
'vmax_err': np.float(perr[0]),
'Km_err': np.float(perr[1]),
'x': x}
def do_hill_kinetics(self):
"""
Calculates Hill kinetics.
Returns:
On success, returns a dictionary containing the kinetic parameters
their errors:
{'vmax': float,
'Kprime': float,
'vmax_err': float,
'Km_prime': float,
'h_err': float,
'h': float,
'x': array_like}
Raises:
FitError if fitting fails.
"""
try:
popt, pconv = optimize.curve_fit(self.hill_kinetics_function,
self.raw_kinetic_data['x'],
self.raw_kinetic_data['y'])
except ValueError:
msg = ('Calculation of Hill kinetics failed! Your input data '
'(either x or y) contain empty (NaN) values!')
if self.logger:
self.logger.error('{}'.format(msg))
raise FitError(msg)
perr = np.sqrt(np.diag(pconv))
vmax = popt[0]
Kprime = popt[1]
h = popt[2]
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
self.logger.info('Hill Kinetics:')
self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0]))
self.logger.info(' K_prime: {} ± {}'.format(Kprime, perr[1]))
self.logger.info(' h: {} ± {}'.format(h, perr[2]))
return {'vmax': np.float(vmax),
'Kprime': np.float(Kprime),
'vmax_err': np.float(perr[0]),
'Kprime_err': np.float(perr[1]),
'h_err': np.float(perr[2]),
'h': np.float(h),
'x': x}