1
0
Fork 0
mirror of https://github.com/Athemis/pyKinetics.git synced 2025-04-05 06:56:02 +00:00

Moved plotting from library to cli-interface; improved logging

...and colorized logging
This commit is contained in:
Alexander Minges 2015-08-21 16:18:47 +02:00
parent c90c18ee84
commit 091c6e62a2
2 changed files with 215 additions and 107 deletions

View file

@ -4,11 +4,109 @@
import argparse
import logging
import csv
import matplotlib.pyplot as plt
from pathlib import Path
from colorlog import ColoredFormatter
import libkinetics
class ExperimentHelper():
def __init__(self, experiment, logger):
self.exp = experiment
self.logger = logger
def linear_regression_function(self, slope, x, intercept):
y = slope * x + intercept
return y
def plot_data(self, exp, outpath):
# iterate over all measurements
for m in exp.measurements:
# plot each measurement
fig, ax = plt.subplots()
ax.set_xlabel('Time')
ax.set_ylabel('Raw Signal')
ax_title = 'Linear regression {} {}'.format(m.concentration,
m.concentration_unit)
ax.set_title(ax_title)
for r in m.replicates:
ax.plot(r.x, r.y, linestyle='None',
marker='o', ms=3, fillstyle='none')
y = self.linear_regression_function(r.fitresult['slope'],
r.x,
r.fitresult['intercept'])
ax.plot(r.x, y, 'k-')
ax.axvspan(m.xlim[0], m.xlim[1], facecolor='0.8', alpha=0.5)
plt.savefig('{}/fit_{}_{}.png'.format(outpath,
m.concentration,
m.concentration_unit),
bbox_inches='tight')
plt.close(fig)
def plot_kinetics(self, exp, outpath):
fig, ax = plt.subplots()
ax.set_xlabel('c [mM]')
ax.set_ylabel('dA/dt [Au/s]')
ax.set_title('Kinetics')
ax.errorbar(exp.raw_kinetic_data['x'],
exp.raw_kinetic_data['y'],
yerr=exp.raw_kinetic_data['yerr'],
fmt='ok', ms=3, fillstyle='none', label="Data with error")
if exp.mm:
y = exp.mm_kinetics_function(exp.mm['x'],
exp.mm['vmax'],
exp.mm['Km'])
ax.plot(exp.mm['x'], y, 'b-', label="Michaelis-Menten")
if exp.hill:
y = exp.hill_kinetics_function(exp.hill['x'],
exp.hill['vmax'],
exp.hill['Kprime'],
exp.hill['h'])
ax.plot(exp.hill['x'], y, 'g-', label="Hill")
ax.legend(loc='best', fancybox=True)
plt.savefig('{}/kinetics.png'.format(outpath), bbox_inches='tight')
plt.close(fig)
def write_data(self, exp, outpath):
with open('{}/results.csv'.format(outpath),
'w',
newline='\n') as csvfile:
writer = csv.writer(csvfile, dialect='excel-tab')
writer.writerow(['# LINEAR FITS'])
writer.writerow([])
writer.writerow(['# concentration',
'avg. slope',
'slope std_err',
'replicates (slope, intercept and r value)'])
for m in exp.measurements:
row = [m.concentration, m.avg_slope, m.avg_slope_err]
for r in m.replicates:
row.append(r.fitresult['slope'])
row.append(r.fitresult['intercept'])
row.append(r.fitresult['r_value'])
writer.writerow(row)
writer.writerow([])
if exp.mm:
writer.writerow(['# MICHAELIS-MENTEN KINETICS'])
writer.writerow(['# vmax', 'Km'])
writer.writerow([exp.mm['vmax'], exp.mm['Km']])
if exp.hill:
writer.writerow(['# HILL KINETICS'])
writer.writerow(['# vmax', 'Kprime', 'h'])
writer.writerow([exp.hill['vmax'], exp.hill['Kprime'],
exp.hill['h']])
def parse_arguments():
parser = argparse.ArgumentParser()
@ -16,8 +114,12 @@ def parse_arguments():
'--verbose',
action='store_true',
help='increase output verbosity')
parser.add_argument('-r',
'--replicates',
action='store_true',
help='fit kinetics to individual replicates')
parser.add_argument('-wh',
'--with_hill',
'--hill',
action='store_true',
help='compute additional kinetics using Hill equation')
parser.add_argument('input',
@ -38,11 +140,25 @@ def initialize_logger():
'fh' which logs to a log file and 'ch' which logs to standard output.
:return logger: returns a logger instance
"""
fmt = '%(log_color)s%(levelname)-8s%(reset)s %(message)s'
formatter = ColoredFormatter(fmt,
datefmt=None,
reset=True,
log_colors={'DEBUG': 'cyan',
'INFO': 'green',
'WARNING': 'yellow',
'ERROR': 'red',
'CRITICAL': 'red,bg_white'},
secondary_log_colors={},
style='%')
logging.captureWarnings(True)
logger = logging.getLogger('pyKinetics-cli')
logger.setLevel(logging.INFO)
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
ch.setLevel(logging.DEBUG)
ch.setFormatter(formatter)
logger.addHandler(ch)
try:
@ -51,7 +167,7 @@ def initialize_logger():
fh.setLevel(logging.INFO)
logger.addHandler(fh)
except IOError as error:
logger.warning('WARNING: Cannot create log file! Run pyKinetics-cli'
logger.warning('Cannot create log file! Run pyKinetics-cli'
'from a directory to which you have write access.')
logger.warning(error.msg)
pass
@ -65,37 +181,50 @@ def main():
# initialize logger
logger = initialize_logger()
if args.with_hill:
do_hill = args.with_hill
if args.hill:
do_hill = args.hill
else:
do_hill = False
if args.replicates:
fit_to_replicates = args.replicates
else:
fit_to_replicates = False
try:
input_path = Path(args.input).resolve()
except FileNotFoundError:
logger.critical('CRITICAL: Path containing input data '
logger.critical('Path containing input data '
'not found: {}'.format(args.input))
raise
try:
output_path = Path(args.output).resolve()
except FileNotFoundError:
logger.critical('CRITICAL: Path for writing results '
logger.critical('Path for writing results '
'not found: {}'.format(args.output))
raise
if output_path.is_dir():
if input_path.is_dir():
logger.info('INFO: Collecting data files')
logger.info('Collecting data files')
data_files = sorted(input_path.glob('**/*.csv'))
msg = 'Calculating kinetics'
if do_hill:
msg = '{} including Hill kinetics'.format(msg)
logger.info('INFO: {}'.format(msg))
exp = libkinetics.Experiment(data_files, (10, 25), do_hill)
logger.info('INFO: Plotting linear fits to data and kinetics')
exp.plot_data(str(output_path))
exp.plot_kinetics(str(output_path))
logger.info('INFO: Writing results to results.csv')
exp.write_data(str(output_path))
logger.info('{}'.format(msg))
exp = libkinetics.Experiment(data_files,
(10, 25),
do_hill=do_hill,
logger=logger,
fit_to_replicates=fit_to_replicates)
ehlp = ExperimentHelper(exp, logger)
logger.info('Plotting linear fits to data')
ehlp.plot_data(exp, str(output_path))
logger.info('Plotting kinetics fit(s)')
ehlp.plot_kinetics(exp, str(output_path))
logger.info('Writing results to results.csv')
ehlp.write_data(exp, str(output_path))
logger.info('Finished!')
else:
msg = '{} is not a directory!'.format(input_path)
logger.critical('CRITICAL: '.format(msg))

View file

@ -3,14 +3,15 @@
from scipy import stats, optimize
import numpy as np
import matplotlib.pyplot as plt
import csv
import logging
import warnings
class Replicate():
def __init__(self, x, y, owner):
def __init__(self, num, x, y, owner):
self.logger = owner.logger
self.num = num + 1
self.x = x
self.y = y
self.owner = owner
@ -23,14 +24,40 @@ class Replicate():
x_for_fit = np.take(self.x, ind_min_max)
y_for_fit = np.take(self.y, ind_min_max)
# ignore warnings about invalid values in sqrt during linear fitting
# they occur frequently and will just clutter the cli
warnings.filterwarnings('ignore',
category=RuntimeWarning,
message='invalid value encountered in sqrt')
(slope, intercept,
r_value,
p_value,
std_err) = stats.linregress(x_for_fit, y_for_fit)
r_squared = r_value**2
conc = '{} {}'.format(self.owner.concentration,
self.owner.concentration_unit)
self.logger.info('Linear fit for {} #{}:'.format(conc, self.num))
if r_squared < 0.9:
msg = ' r-squared: {} < 0.9; Check fit manually!'
self.logger.warning(msg.format(round(r_squared, 4)))
else:
msg = ' r-squared: {}'
self.logger.info(msg.format(round(r_squared, 4)))
self.logger.info(' slope: {}'.format(slope))
if slope < 0:
self.logger.warning('Slope is negative. Will use absolute value '
'for further calculations!')
self.logger.info(' intercept: {}'.format(slope))
return {'slope': slope,
'intercept': intercept,
'r_value': r_value,
'r_squared': r_squared,
'p_value': p_value,
'std_err': std_err}
@ -54,7 +81,10 @@ class Measurement():
length_x, num_replicates = self.y.shape
for n in range(num_replicates):
self.replicates.append(Replicate(self.x, self.y[:, n:n+1], self))
self.replicates.append(Replicate(n,
self.x,
self.y[:, n:n+1],
self))
for r in self.replicates:
self.slopes.append(r.fitresult['slope'])
@ -62,25 +92,12 @@ class Measurement():
self.avg_slope = np.average(self.slopes)
self.avg_slope_err = np.std(self.slopes)
def plot(self, outpath):
fig, ax = plt.subplots()
ax.set_xlabel('Time [s]')
ax.set_ylabel('Absorption (340 nm) [Au]')
ax.set_title('Linear regression {} {}'.format(self.concentration,
self.concentration_unit))
for r in self.replicates:
ax.plot(r.x, r.y, linestyle='None',
marker='o', ms=3, fillstyle='none')
ax.plot(r.x, r.fitresult['slope']*r.x+r.fitresult['intercept'],
'k-')
ax.axvspan(self.xlim[0], self.xlim[1], facecolor='0.8', alpha=0.5)
plt.savefig('{}/fit_{}_{}.png'.format(outpath,
self.concentration,
self.concentration_unit),
bbox_inches='tight')
plt.close(fig)
self.logger.info('Average slope: {} ± {}'.format(self.avg_slope,
self.avg_slope_err))
if self.avg_slope < 0:
self.logger.warning('Avererage slope is negative. Will use '
'absolute value for further calculations!')
self.logger.info('-----')
def get_results(self):
results = []
@ -92,12 +109,17 @@ class Measurement():
class Experiment():
def __init__(self, data_files, xlim, do_hill=False, logger=None):
def __init__(self, data_files, xlim, do_hill=False, fit_to_replicates=False, logger=None):
if logger:
self.logger = logger
else:
self.logger = logging.getLogger(__name__)
# collction of indepentend measurements
self.measurements = []
self.fit_to_replicates = fit_to_replicates
# dictionary to store data for the kinetics calculation
self.raw_kinetic_data = {'x': [],
'y': [],
@ -125,8 +147,15 @@ class Experiment():
# iterate over all measurements
for m in self.measurements:
# extract relevant data for kinetics calculation (concentration,
# average slope and error)
if self.fit_to_replicates:
for r in m.replicates:
self.raw_kinetic_data['x'].append(m.concentration)
self.raw_kinetic_data['y'].append(np.absolute(r.fitresult['slope']))
self.raw_kinetic_data['yerr'].append(r.fitresult['std_err'])
else:
# extract relevant data for kinetics calculation
# (concentration, average slope and error)
self.raw_kinetic_data['x'].append(m.concentration)
self.raw_kinetic_data['y'].append(np.absolute(m.avg_slope))
self.raw_kinetic_data['yerr'].append(m.avg_slope_err)
@ -163,6 +192,10 @@ class Experiment():
Km = popt[1]
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
self.logger.info('Michaelis-Menten Kinetics:')
self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0]))
self.logger.info(' Km: {} ± {}'.format(Km, perr[1]))
return {'vmax': float(vmax),
'Km': float(Km),
'perr': perr,
@ -170,7 +203,7 @@ class Experiment():
except:
msg = 'Calculation of Michaelis-Menten kinetics failed!'
if self.logger:
self.logger.error('ERROR: {}'.format(msg))
self.logger.error('{}'.format(msg))
else:
print(msg)
return None
@ -188,6 +221,11 @@ class Experiment():
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
self.logger.info('Hill Kinetics:')
self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0]))
self.logger.info(' K_prime: {} ± {}'.format(Kprime, perr[1]))
self.logger.info(' h: {} ± {}'.format(h, perr[2]))
return {'vmax': float(vmax),
'Kprime': float(Kprime),
'perr': perr,
@ -196,66 +234,7 @@ class Experiment():
except:
msg = 'Calculation of Hill kinetics failed!'
if self.logger:
self.logger.error('ERROR: {}'.format(msg))
self.logger.error('{}'.format(msg))
else:
print(msg)
return None
def plot_kinetics(self, outpath):
fig, ax = plt.subplots()
ax.set_xlabel('c [mM]')
ax.set_ylabel('dA/dt [Au/s]')
ax.set_title('Kinetics')
ax.errorbar(self.raw_kinetic_data['x'],
self.raw_kinetic_data['y'],
yerr=self.raw_kinetic_data['yerr'],
fmt='ok', ms=3, fillstyle='none', label="Data with error")
if self.mm:
y = self.mm_kinetics_function(self.mm['x'],
self.mm['vmax'],
self.mm['Km'])
ax.plot(self.mm['x'], y, 'b-', label="Michaelis-Menten")
if self.hill:
y = self.hill_kinetics_function(self.hill['x'],
self.hill['vmax'],
self.hill['Kprime'],
self.hill['h'])
ax.plot(self.hill['x'], y, 'g-', label="Hill")
ax.legend(loc='best', fancybox=True)
plt.savefig('{}/kinetics.png'.format(outpath), bbox_inches='tight')
plt.close(fig)
def write_data(self, outpath):
with open('{}/results.csv'.format(outpath),
'w',
newline='\n') as csvfile:
writer = csv.writer(csvfile, dialect='excel-tab')
writer.writerow(['# LINEAR FITS'])
writer.writerow([])
writer.writerow(['# concentration',
'avg. slope',
'slope std_err',
'replicates (slope, intercept and r value)'])
for m in self.measurements:
row = [m.concentration, m.avg_slope, m.avg_slope_err]
for r in m.replicates:
row.append(r.fitresult['slope'])
row.append(r.fitresult['intercept'])
row.append(r.fitresult['r_value'])
writer.writerow(row)
writer.writerow([])
if self.mm:
writer.writerow(['# MICHAELIS-MENTEN KINETICS'])
writer.writerow(['# vmax', 'Km'])
writer.writerow([self.mm['vmax'], self.mm['Km']])
if self.hill:
writer.writerow(['# HILL KINETICS'])
writer.writerow(['# vmax', 'Kprime', 'h'])
writer.writerow([self.hill['vmax'], self.hill['Kprime'],
self.hill['h']])