1
0
Fork 0
mirror of https://github.com/Athemis/pyKinetics.git synced 2025-04-06 06:56:04 +00:00
This commit is contained in:
Alexander Minges 2015-08-31 19:08:48 +02:00
commit 781c6ccb55
2 changed files with 287 additions and 85 deletions

View file

@ -36,6 +36,11 @@ except ImportError:
class ExperimentHelper(): class ExperimentHelper():
"""
Helper class for dealing with results of libkinetics.
Provides plotting and data output functionality for libkinetics.Experiment.
"""
def __init__(self, experiment, logger): def __init__(self, experiment, logger):
self.exp = experiment self.exp = experiment
self.logger = logger self.logger = logger
@ -44,9 +49,9 @@ class ExperimentHelper():
y = slope * x + intercept y = slope * x + intercept
return y return y
def plot_data(self, exp, outpath): def plot_data(self, outpath):
# iterate over all measurements # iterate over all measurements
for m in exp.measurements: for m in self.exp.measurements:
# plot each measurement # plot each measurement
fig, ax = plt.subplots() fig, ax = plt.subplots()
ax.set_xlabel('Time') ax.set_xlabel('Time')
@ -74,7 +79,8 @@ class ExperimentHelper():
bbox_inches='tight') bbox_inches='tight')
plt.close(fig) plt.close(fig)
def plot_kinetics(self, exp, outpath): def plot_kinetics(self, outpath):
exp = self.exp
fig, ax = plt.subplots() fig, ax = plt.subplots()
ax.set_xlabel('c [mM]') ax.set_xlabel('c [mM]')
ax.set_ylabel('dA/dt [Au/s]') ax.set_ylabel('dA/dt [Au/s]')
@ -101,35 +107,49 @@ class ExperimentHelper():
plt.savefig('{}/kinetics.png'.format(outpath), bbox_inches='tight') plt.savefig('{}/kinetics.png'.format(outpath), bbox_inches='tight')
plt.close(fig) plt.close(fig)
def write_data(self, exp, outpath): def write_data(self, outpath):
exp = self.exp
with open('{}/results.csv'.format(outpath), with open('{}/results.csv'.format(outpath),
'w', 'w',
newline='\n') as csvfile: newline='\n') as csvfile:
writer = csv.writer(csvfile, dialect='excel-tab') writer = csv.writer(csvfile, dialect='excel-tab')
writer.writerow(['# LINEAR FITS']) writer.writerow(['LINEAR FITS'])
writer.writerow([]) writer.writerow([])
writer.writerow(['# concentration', 'avg. slope', 'slope std_err', writer.writerow(['concentration',
'replicates (slope, intercept and r value)']) 'avg. slope',
'slope std_err',
'replicates (slope, intercept and r_squared)'])
for m in exp.measurements: for m in exp.measurements:
row = [m.concentration, m.avg_slope, m.avg_slope_err] row = [m.concentration, m.avg_slope, m.avg_slope_err]
for r in m.replicates: for r in m.replicates:
row.append(r.fitresult['slope']) row.append(r.fitresult['slope'])
row.append(r.fitresult['intercept']) row.append(r.fitresult['intercept'])
row.append(r.fitresult['r_value']) row.append(r.fitresult['r_squared'])
writer.writerow(row) writer.writerow(row)
writer.writerow([]) writer.writerow([])
if exp.mm: if exp.mm:
writer.writerow(['# MICHAELIS-MENTEN KINETICS']) self.logger.debug(' Writing Michaelis-Menten results.')
writer.writerow(['# vmax', 'Km']) writer.writerow(['MICHAELIS-MENTEN KINETICS'])
writer.writerow([exp.mm['vmax'], exp.mm['Km']]) writer.writerow(['', 'value', 'std'])
writer.writerow(['vmax', exp.mm['vmax'],
exp.mm['vmax_err']])
writer.writerow(['Kprime', exp.mm['Km'],
exp.mm['Km_err']])
if exp.hill: if exp.hill:
writer.writerow(['# HILL KINETICS']) self.logger.debug(' Writing Hill results.')
writer.writerow(['# vmax', 'Kprime', 'h']) writer.writerow([])
writer.writerow([exp.hill['vmax'], exp.hill['Kprime'], writer.writerow(['HILL KINETICS'])
exp.hill['h']]) writer.writerow(['', 'value', 'std'])
writer.writerow(['vmax', exp.hill['vmax'],
exp.hill['vmax_err']])
writer.writerow(['Kprime', exp.hill['Kprime'],
exp.hill['Kprime_err']])
writer.writerow(['h', exp.hill['h'],
exp.hill['h_err']])
def parse_arguments(): def parse_arguments():
@ -165,9 +185,14 @@ def parse_arguments():
def initialize_logger(): def initialize_logger():
""" """
Initialization of logging subsystem. Two logging handlers are brought up: Initialization of logging subsystem.
'fh' which logs to a log file and 'ch' which logs to standard output.
:return logger: returns a logger instance Two logging handlers are brought up: 'fh' which logs to a log file and
'ch' which logs to standard output. If colorlog is installed, logging
to console will be colored.
Returns:
logger: logging.Logger instance
""" """
if COLORED_LOG: if COLORED_LOG:
fmt = '%(log_color)s%(levelname)-8s%(reset)s %(message)s' fmt = '%(log_color)s%(levelname)-8s%(reset)s %(message)s'
@ -211,6 +236,11 @@ def initialize_logger():
def main(): def main():
"""
Main method of pyKinetics.
Will be executed when analyze-cli.py is started from the command line.
"""
# parse command line arguments # parse command line arguments
args = parse_arguments() args = parse_arguments()
# initialize logger # initialize logger
@ -256,11 +286,11 @@ def main():
fit_to_replicates=fit_to_replicates) fit_to_replicates=fit_to_replicates)
ehlp = ExperimentHelper(exp, logger) ehlp = ExperimentHelper(exp, logger)
logger.info('Plotting linear fits') logger.info('Plotting linear fits')
ehlp.plot_data(exp, str(output_path)) ehlp.plot_data(str(output_path))
logger.info('Plotting kinetic fit(s)') logger.info('Plotting kinetic fit(s)')
ehlp.plot_kinetics(exp, str(output_path)) ehlp.plot_kinetics(str(output_path))
logger.info('Writing results to results.csv') logger.info('Writing results to results.csv')
ehlp.write_data(exp, str(output_path)) ehlp.write_data(str(output_path))
logger.info('Finished!') logger.info('Finished!')
else: else:
msg = '{} is not a directory!'.format(input_path) msg = '{} is not a directory!'.format(input_path)

View file

@ -1,15 +1,51 @@
#!/usr/bin/python #!/usr/bin/python
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
from scipy import stats, optimize
import numpy as np
import logging import logging
import warnings import warnings
import operator
try:
import numpy as np
except ImportError:
print('----- NumPy must be installed! -----')
try:
from scipy import stats, optimize
except ImportError:
print('----- SciPy must be installed! -----')
class Error(Exception):
"""
Main Error class derived from Exception.
"""
pass
class FitError(Error):
"""
Exception raised if fitting fails.
"""
pass
class Replicate(): class Replicate():
""" """
Represents a single replicate within a measurement Represents a single replicate within a measurement.
Linear regression for v0 is executed at this level.
Attributes:
logger: logging.Logger instance inherited by the owning Measurement.
num: float
identification number of replicate within the experiment
x, y: float
time and signal to be analysed.
owner: object
measurement this measurement belongs to
xlim:
fitresult:
""" """
def __init__(self, num, xy, owner): def __init__(self, num, xy, owner):
@ -67,6 +103,26 @@ class Replicate():
class Measurement(): class Measurement():
""" """
Represents a single measurement within an experiment. Represents a single measurement within an experiment.
Each measurement consists of one ore more replicates and is associated
with a specific substrate concentration.
Attributes:
logger: logging.Logger instance inherited by the owning Experiment.
concentration: float
substrate concentration associated with the measurement.
concentration_unit: string
unit of the concentration; only used for labeling plots/tables.
x, y: float
time and signal to be analysed.
replicates: array_like
list of individual replicates of the measurement.
owner: object
experiment this measurement belongs to
xlim: array_like
lower and upper bounds for calculating the v0 linear fit.
avg_slope, avg_slope_err: float
average slope (v0) of the measurement and its standard deviation
""" """
def __init__(self, xy, conc, conc_unit, owner): def __init__(self, xy, conc, conc_unit, owner):
@ -102,6 +158,15 @@ class Measurement():
self.logger.info('-----') self.logger.info('-----')
def get_results(self): def get_results(self):
"""
Collect results of the individual replicates.
Collects results of each replicate and append to results list.
Returns:
results: array_like
list of results from each replicate of the measurement.
"""
results = [] results = []
for r in self.replicates: for r in self.replicates:
results.append(r.fitresult) results.append(r.fitresult)
@ -113,22 +178,48 @@ class Experiment():
""" """
Represents the actual experiment. Represents the actual experiment.
Consists of several Measurement objects. Representation of a kinetics experiment. It consists of multiple
objects of type Measurement.
Args: Attributes:
data_files: list containing csv-formatted data files logger: logging.Logger instance that is used for logging to console
xlim: tuple of float values defining the lower and upper bound for and log file.
linear fitting of v0 measurements: array_like
do_hill: boolean to define whether to fit Hill-type kinetics in list of individual measurements of the experiment.
addition to Michaelis-Menten kinetics. Defaults to False Individual measurements are sorted by their substrate
fit_to_replicates: boolean to define wheter to fit to individual concentration.
replicates instead of the avarage slope. Defaults to False fit_to_replicates: boolean
logger: logging.Logger instance. If not given, a new logger is created whether to fit to individual replicates instead to the average of
each measurement.
raw_kinetic_data: dictionary
storing x, y and std_err of each measurement for fitting kinetic
curves.
xlim: array_like
lower and upper bounds for calculating the v0 linear fit.
""" """
def __init__(self, data_files, xlim, do_hill=False, def __init__(self, data_files, xlim, do_hill=False,
fit_to_replicates=False, logger=None): fit_to_replicates=False, logger=None):
"""
Inits Experiment class with experimental parameters
This is the only class you should have to use directly in your program.
Instances of Measurement and Replicate objects are created
automatically using the provided data files.
Args:
data_files: list containing csv-formatted data files
xlim: tuple of float values defining the lower and upper bound for
linear fitting of v0
do_hill: boolean to define whether to fit Hill-type kinetics in
addition to Michaelis-Menten kinetics. Defaults to False
fit_to_replicates: boolean to define wheter to fit to individual
replicates instead of the avarage slope. Defaults to False
logger: logging.Logger instance. If not given, a new logger is
created
"""
# check if a logger was handed over; if not, create a new instance
if logger: if logger:
self.logger = logger self.logger = logger
else: else:
@ -144,12 +235,22 @@ class Experiment():
# parse data files and generate measurements # parse data files and generate measurements
for csvfile in data_files: for csvfile in data_files:
tmp = np.genfromtxt(str(csvfile), comments='#') try:
with open(str(csvfile)) as datafile: tmp = np.genfromtxt(str(csvfile), comments='#')
head = [next(datafile) for x in range(2)] with open(str(csvfile)) as datafile:
head = [next(datafile) for x in range(2)]
except OSError:
msg = "Failed reading file {}".format(str(csvfile))
self.logger.error(msg)
raise
# extract concentration and unit from header # extract concentration and unit from header
# TODO: move unit to parameter # TODO: move unit to parameter
# TODO: More error-proof header detection # check header for correct number of items
if len(head) < 2 or len(head) > 2:
msg = 'Parsing header of data files failed! Wrong format?'
self.logger.error(msg)
raise Error(msg)
conc = head[0].strip('#').strip() conc = head[0].strip('#').strip()
unit = head[1].strip('#').strip() unit = head[1].strip('#').strip()
# split x and y data apart # split x and y data apart
@ -161,6 +262,10 @@ class Experiment():
measurement = Measurement((x, y), conc, unit, self) measurement = Measurement((x, y), conc, unit, self)
self.measurements.append(measurement) self.measurements.append(measurement)
# sort measurements by concentration
self.measurements = sorted(self.measurements,
key=operator.attrgetter('concentration'))
# iterate over all measurements # iterate over all measurements
for m in self.measurements: for m in self.measurements:
if self.fit_to_replicates: if self.fit_to_replicates:
@ -185,73 +290,140 @@ class Experiment():
else: else:
self.hill = None self.hill = None
def plot_data(self, outpath):
# iterate over all measurements
for m in self.measurements:
# plot each measurement
m.plot(outpath)
def mm_kinetics_function(self, x, vmax, Km): def mm_kinetics_function(self, x, vmax, Km):
"""
Michaelis-Menten function.
Classical Michaelis-Menten enzyme kinetics function.
Args:
x: float
concentration at velocity v
vmax: float
maximum velocity
Km: float
Michaelis constant
Returns:
v: float
velocity at given concentration x
"""
v = (vmax * x) / (Km + x) v = (vmax * x) / (Km + x)
return v return v
def hill_kinetics_function(self, x, vmax, Kprime, h): def hill_kinetics_function(self, x, vmax, Kprime, h):
"""
Hill function.
Hill function for enzyme kinetics with cooperativity.
Args:
x: float
concentration at velocity v.
vmax: float
maximum velocity.
Kprime: float
kinetics constant related to Michaelis constant.
h: float
hill slope; if h=1, Hill function is identical to
Michaelis-Menten function.
Returns:
v: float
velocity at given concentration x
"""
v = (vmax * (x ** h)) / (Kprime + (x ** h)) v = (vmax * (x ** h)) / (Kprime + (x ** h))
return v return v
def do_mm_kinetics(self): def do_mm_kinetics(self):
"""
Calculates Michaelis-Menten kinetics.
Returns:
On success, returns a dictionary containing the kinetic parameters
and their errors:
{'vmax': float,
'Km': float,
'vmax_err': float,
'Km_err': float,
'x': array_like}
Raises:
FitError if fitting fails.
"""
try: try:
popt, pconv = optimize.curve_fit(self.mm_kinetics_function, popt, pconv = optimize.curve_fit(self.mm_kinetics_function,
self.raw_kinetic_data['x'], self.raw_kinetic_data['x'],
self.raw_kinetic_data['y']) self.raw_kinetic_data['y'])
except ValueError:
perr = np.sqrt(np.diag(pconv)) msg = ('Calculation of Michaelis-Menten kinetics failed! Your '
vmax = popt[0] 'input data (either x or y) contain empty (NaN) values!')
Km = popt[1]
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
self.logger.info('Michaelis-Menten Kinetics:')
self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0]))
self.logger.info(' Km: {} ± {}'.format(Km, perr[1]))
return {'vmax': float(vmax), 'Km': float(Km), 'perr': perr, 'x': x}
except:
msg = 'Calculation of Michaelis-Menten kinetics failed!'
if self.logger: if self.logger:
self.logger.error('{}'.format(msg)) self.logger.error('{}'.format(msg))
else: raise FitError(msg)
print(msg)
return None perr = np.sqrt(np.diag(pconv))
vmax = popt[0]
Km = popt[1]
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
self.logger.info('Michaelis-Menten Kinetics:')
self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0]))
self.logger.info(' Km: {} ± {}'.format(Km, perr[1]))
return {'vmax': np.float(vmax),
'Km': np.float(Km),
'vmax_err': np.float(perr[0]),
'Km_err': np.float(perr[1]),
'x': x}
def do_hill_kinetics(self): def do_hill_kinetics(self):
"""
Calculates Hill kinetics.
Returns:
On success, returns a dictionary containing the kinetic parameters
their errors:
{'vmax': float,
'Kprime': float,
'vmax_err': float,
'Km_prime': float,
'h_err': float,
'h': float,
'x': array_like}
Raises:
FitError if fitting fails.
"""
try: try:
popt, pconv = optimize.curve_fit(self.hill_kinetics_function, popt, pconv = optimize.curve_fit(self.hill_kinetics_function,
self.raw_kinetic_data['x'], self.raw_kinetic_data['x'],
self.raw_kinetic_data['y']) self.raw_kinetic_data['y'])
except ValueError:
perr = np.sqrt(np.diag(pconv)) msg = ('Calculation of Hill kinetics failed! Your input data '
vmax = popt[0] '(either x or y) contains empty (NaN) values!')
Kprime = popt[1]
h = popt[2]
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
self.logger.info('Hill Kinetics:')
self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0]))
self.logger.info(' K_prime: {} ± {}'.format(Kprime, perr[1]))
self.logger.info(' h: {} ± {}'.format(h, perr[2]))
return {
'vmax': float(vmax),
'Kprime': float(Kprime),
'perr': perr,
'h': h,
'x': x
}
except:
msg = 'Calculation of Hill kinetics failed!'
if self.logger: if self.logger:
self.logger.error('{}'.format(msg)) self.logger.error('{}'.format(msg))
else: raise FitError(msg)
print(msg)
return None perr = np.sqrt(np.diag(pconv))
vmax = popt[0]
Kprime = popt[1]
h = popt[2]
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
self.logger.info('Hill Kinetics:')
self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0]))
self.logger.info(' K_prime: {} ± {}'.format(Kprime, perr[1]))
self.logger.info(' h: {} ± {}'.format(h, perr[2]))
return {'vmax': np.float(vmax),
'Kprime': np.float(Kprime),
'vmax_err': np.float(perr[0]),
'Kprime_err': np.float(perr[1]),
'h_err': np.float(perr[2]),
'h': np.float(h),
'x': x}