mirror of
https://github.com/Athemis/pyKinetics.git
synced 2025-04-04 22:46:03 +00:00
Reformat code using yapf
This commit is contained in:
parent
93751a2b3d
commit
4b3fb762fb
2 changed files with 50 additions and 57 deletions
|
@ -36,7 +36,6 @@ except ImportError:
|
|||
|
||||
|
||||
class ExperimentHelper():
|
||||
|
||||
def __init__(self, experiment, logger):
|
||||
self.exp = experiment
|
||||
self.logger = logger
|
||||
|
@ -57,18 +56,20 @@ class ExperimentHelper():
|
|||
ax.set_title(ax_title)
|
||||
|
||||
for r in m.replicates:
|
||||
ax.plot(r.x, r.y, linestyle='None',
|
||||
marker='o', ms=3, fillstyle='none',
|
||||
ax.plot(r.x,
|
||||
r.y,
|
||||
linestyle='None',
|
||||
marker='o',
|
||||
ms=3,
|
||||
fillstyle='none',
|
||||
label='replicate #{}'.format(r.num))
|
||||
y = self.linear_regression_function(r.fitresult['slope'],
|
||||
r.x,
|
||||
y = self.linear_regression_function(r.fitresult['slope'], r.x,
|
||||
r.fitresult['intercept'])
|
||||
ax.plot(r.x, y, 'k-')
|
||||
ax.axvspan(m.xlim[0], m.xlim[1], facecolor='0.8', alpha=0.5)
|
||||
|
||||
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
|
||||
plt.savefig('{}/fit_{}_{}.png'.format(outpath,
|
||||
m.concentration,
|
||||
plt.savefig('{}/fit_{}_{}.png'.format(outpath, m.concentration,
|
||||
m.concentration_unit),
|
||||
bbox_inches='tight')
|
||||
plt.close(fig)
|
||||
|
@ -82,18 +83,18 @@ class ExperimentHelper():
|
|||
ax.errorbar(exp.raw_kinetic_data['x'],
|
||||
exp.raw_kinetic_data['y'],
|
||||
yerr=exp.raw_kinetic_data['yerr'],
|
||||
fmt='ok', ms=3, fillstyle='none', label="Data with error")
|
||||
fmt='ok',
|
||||
ms=3,
|
||||
fillstyle='none',
|
||||
label="Data with error")
|
||||
|
||||
if exp.mm:
|
||||
y = exp.mm_kinetics_function(exp.mm['x'],
|
||||
exp.mm['vmax'],
|
||||
y = exp.mm_kinetics_function(exp.mm['x'], exp.mm['vmax'],
|
||||
exp.mm['Km'])
|
||||
ax.plot(exp.mm['x'], y, 'b-', label="Michaelis-Menten")
|
||||
if exp.hill:
|
||||
y = exp.hill_kinetics_function(exp.hill['x'],
|
||||
exp.hill['vmax'],
|
||||
exp.hill['Kprime'],
|
||||
exp.hill['h'])
|
||||
y = exp.hill_kinetics_function(exp.hill['x'], exp.hill['vmax'],
|
||||
exp.hill['Kprime'], exp.hill['h'])
|
||||
ax.plot(exp.hill['x'], y, 'g-', label="Hill")
|
||||
|
||||
ax.legend(loc='best', fancybox=True)
|
||||
|
@ -109,9 +110,7 @@ class ExperimentHelper():
|
|||
writer = csv.writer(csvfile, dialect='excel-tab')
|
||||
writer.writerow(['# LINEAR FITS'])
|
||||
writer.writerow([])
|
||||
writer.writerow(['# concentration',
|
||||
'avg. slope',
|
||||
'slope std_err',
|
||||
writer.writerow(['# concentration', 'avg. slope', 'slope std_err',
|
||||
'replicates (slope, intercept and r value)'])
|
||||
for m in exp.measurements:
|
||||
row = [m.concentration, m.avg_slope, m.avg_slope_err]
|
||||
|
@ -151,9 +150,7 @@ def parse_arguments():
|
|||
parser.add_argument('start',
|
||||
type=np.float64,
|
||||
help='start of fitting window')
|
||||
parser.add_argument('end',
|
||||
type=np.float64,
|
||||
help='end of fitting window')
|
||||
parser.add_argument('end', type=np.float64, help='end of fitting window')
|
||||
parser.add_argument('input',
|
||||
type=str,
|
||||
help='directory containing input files in csv format')
|
||||
|
@ -177,18 +174,18 @@ def initialize_logger():
|
|||
formatter = ColoredFormatter(fmt,
|
||||
datefmt=None,
|
||||
reset=True,
|
||||
log_colors={'DEBUG': 'cyan',
|
||||
'INFO': 'green',
|
||||
'WARNING': 'yellow',
|
||||
'ERROR': 'red',
|
||||
'CRITICAL': 'red,bg_white'},
|
||||
log_colors={
|
||||
'DEBUG': 'cyan',
|
||||
'INFO': 'green',
|
||||
'WARNING': 'yellow',
|
||||
'ERROR': 'red',
|
||||
'CRITICAL': 'red,bg_white'
|
||||
},
|
||||
secondary_log_colors={},
|
||||
style='%')
|
||||
else:
|
||||
fmt = '%(levelname)-8s%(message)s'
|
||||
formatter = logging.Formatter(fmt,
|
||||
datefmt=None,
|
||||
style='%')
|
||||
formatter = logging.Formatter(fmt, datefmt=None, style='%')
|
||||
|
||||
logging.captureWarnings(True)
|
||||
logger = logging.getLogger('pyKinetics-cli')
|
||||
|
@ -274,5 +271,6 @@ def main():
|
|||
logger.critical('CRITICAL: '.format(msg))
|
||||
raise ValueError(msg)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
|
@ -21,8 +21,7 @@ class Replicate():
|
|||
self.fitresult = self.fit()
|
||||
|
||||
def fit(self):
|
||||
ind_min_max = np.where((self.x >= self.xlim[0]) &
|
||||
(self.x <= self.xlim[1]))
|
||||
ind_min_max = np.where((self.x >= self.xlim[0]) & (self.x <= self.xlim[1]))
|
||||
x_for_fit = np.take(self.x, ind_min_max)
|
||||
y_for_fit = np.take(self.y, ind_min_max)
|
||||
|
||||
|
@ -32,12 +31,10 @@ class Replicate():
|
|||
category=RuntimeWarning,
|
||||
message='invalid value encountered in sqrt')
|
||||
|
||||
(slope, intercept,
|
||||
r_value,
|
||||
p_value,
|
||||
std_err) = stats.linregress(x_for_fit, y_for_fit)
|
||||
(slope, intercept, r_value, p_value, std_err
|
||||
) = stats.linregress(x_for_fit, y_for_fit)
|
||||
|
||||
r_squared = r_value**2
|
||||
r_squared = r_value ** 2
|
||||
conc = '{} {}'.format(self.owner.concentration,
|
||||
self.owner.concentration_unit)
|
||||
|
||||
|
@ -57,12 +54,14 @@ class Replicate():
|
|||
'value for further calculations!')
|
||||
self.logger.info(' intercept: {}'.format(slope))
|
||||
|
||||
return {'slope': slope,
|
||||
'intercept': intercept,
|
||||
'r_value': r_value,
|
||||
'r_squared': r_squared,
|
||||
'p_value': p_value,
|
||||
'std_err': std_err}
|
||||
return {
|
||||
'slope': slope,
|
||||
'intercept': intercept,
|
||||
'r_value': r_value,
|
||||
'r_squared': r_squared,
|
||||
'p_value': p_value,
|
||||
'std_err': std_err
|
||||
}
|
||||
|
||||
|
||||
class Measurement():
|
||||
|
@ -86,8 +85,7 @@ class Measurement():
|
|||
length_x, num_replicates = self.y.shape
|
||||
|
||||
for n in range(num_replicates):
|
||||
self.replicates.append(Replicate(n,
|
||||
(self.x, self.y[:, n:n+1]),
|
||||
self.replicates.append(Replicate(n, (self.x, self.y[:, n:n + 1]),
|
||||
self))
|
||||
|
||||
for r in self.replicates:
|
||||
|
@ -141,9 +139,7 @@ class Experiment():
|
|||
|
||||
self.fit_to_replicates = fit_to_replicates
|
||||
# dictionary to store data for the kinetics calculation
|
||||
self.raw_kinetic_data = {'x': [],
|
||||
'y': [],
|
||||
'yerr': []}
|
||||
self.raw_kinetic_data = {'x': [], 'y': [], 'yerr': []}
|
||||
self.xlim = xlim
|
||||
|
||||
# parse data files and generate measurements
|
||||
|
@ -196,11 +192,11 @@ class Experiment():
|
|||
m.plot(outpath)
|
||||
|
||||
def mm_kinetics_function(self, x, vmax, Km):
|
||||
v = (vmax*x)/(Km+x)
|
||||
v = (vmax * x) / (Km + x)
|
||||
return v
|
||||
|
||||
def hill_kinetics_function(self, x, vmax, Kprime, h):
|
||||
v = (vmax*(x**h))/(Kprime+(x**h))
|
||||
v = (vmax * (x ** h)) / (Kprime + (x ** h))
|
||||
return v
|
||||
|
||||
def do_mm_kinetics(self):
|
||||
|
@ -218,10 +214,7 @@ class Experiment():
|
|||
self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0]))
|
||||
self.logger.info(' Km: {} ± {}'.format(Km, perr[1]))
|
||||
|
||||
return {'vmax': float(vmax),
|
||||
'Km': float(Km),
|
||||
'perr': perr,
|
||||
'x': x}
|
||||
return {'vmax': float(vmax), 'Km': float(Km), 'perr': perr, 'x': x}
|
||||
except:
|
||||
msg = 'Calculation of Michaelis-Menten kinetics failed!'
|
||||
if self.logger:
|
||||
|
@ -248,11 +241,13 @@ class Experiment():
|
|||
self.logger.info(' K_prime: {} ± {}'.format(Kprime, perr[1]))
|
||||
self.logger.info(' h: {} ± {}'.format(h, perr[2]))
|
||||
|
||||
return {'vmax': float(vmax),
|
||||
'Kprime': float(Kprime),
|
||||
'perr': perr,
|
||||
'h': h,
|
||||
'x': x}
|
||||
return {
|
||||
'vmax': float(vmax),
|
||||
'Kprime': float(Kprime),
|
||||
'perr': perr,
|
||||
'h': h,
|
||||
'x': x
|
||||
}
|
||||
except:
|
||||
msg = 'Calculation of Hill kinetics failed!'
|
||||
if self.logger:
|
||||
|
|
Loading…
Add table
Reference in a new issue