mirror of
https://github.com/Athemis/pyKinetics.git
synced 2025-04-05 14:56:02 +00:00
Initial commit of analyze.py
This commit is contained in:
parent
71f347e9cc
commit
7bbb368499
1 changed files with 244 additions and 0 deletions
244
analyze.py
Executable file
244
analyze.py
Executable file
|
@ -0,0 +1,244 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
from scipy import stats, optimize
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import glob
|
||||
import csv
|
||||
|
||||
|
||||
class Replicate():
|
||||
def __init__(self, x, y, owner):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.owner = owner
|
||||
self.xlim = owner.xlim
|
||||
self.fitresult = self.fit()
|
||||
|
||||
def fit(self):
|
||||
ind_min_max = np.where((self.x >= self.xlim[0]) &
|
||||
(self.x <= self.xlim[1]))
|
||||
x_for_fit = np.take(self.x, ind_min_max)
|
||||
y_for_fit = np.take(self.y, ind_min_max)
|
||||
|
||||
(slope, intercept,
|
||||
r_value,
|
||||
p_value,
|
||||
std_err) = stats.linregress(x_for_fit, y_for_fit)
|
||||
|
||||
return {'slope': slope,
|
||||
'intercept': intercept,
|
||||
'r_value': r_value,
|
||||
'p_value': p_value,
|
||||
'std_err': std_err}
|
||||
|
||||
|
||||
class Measurement():
|
||||
|
||||
def __init__(self, x, y, conc, conc_unit, owner):
|
||||
self.concentration = float(conc)
|
||||
self.concentration_unit = conc_unit
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.replicates = []
|
||||
self.owner = owner
|
||||
self.xlim = owner.xlim
|
||||
self.slopes = []
|
||||
self.avg_slope = None
|
||||
self.avg_slope_err = None
|
||||
|
||||
# extract number of replicates (num_replicates)
|
||||
length_x, num_replicates = self.y.shape
|
||||
|
||||
for n in range(num_replicates):
|
||||
self.replicates.append(Replicate(self.x, self.y[:, n:n+1], self))
|
||||
|
||||
for r in self.replicates:
|
||||
self.slopes.append(r.fitresult['slope'])
|
||||
|
||||
self.avg_slope = np.average(self.slopes)
|
||||
self.avg_slope_err = np.std(self.slopes)
|
||||
|
||||
def plot(self):
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Absorption (340 nm) [Au]')
|
||||
ax.set_title('Linear regression {} {}'.format(self.concentration,
|
||||
self.concentration_unit))
|
||||
|
||||
for r in self.replicates:
|
||||
ax.plot(r.x, r.y, linestyle='None',
|
||||
marker='o', ms=3, fillstyle='none')
|
||||
ax.plot(r.x, r.fitresult['slope']*r.x+r.fitresult['intercept'],
|
||||
'k-')
|
||||
ax.axvspan(self.xlim[0], self.xlim[1], facecolor='0.8', alpha=0.5)
|
||||
|
||||
plt.savefig('out/fit_{}_{}.png'.format(self.concentration,
|
||||
self.concentration_unit),
|
||||
bbox_inches='tight')
|
||||
plt.close(fig)
|
||||
|
||||
def get_results(self):
|
||||
results = []
|
||||
for r in self.replicates:
|
||||
results.append(r.fitresult)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
class Experiment():
|
||||
|
||||
def __init__(self, data_files, xlim):
|
||||
|
||||
# collction of indepentend measurements
|
||||
self.measurements = []
|
||||
# dictionary to store data for the kinetics calculation
|
||||
self.raw_kinetic_data = {'x': [],
|
||||
'y': [],
|
||||
'yerr': []}
|
||||
self.xlim = xlim
|
||||
|
||||
# variables to store calculated Michaelis-Menten and Hill kinetics
|
||||
self.mm = None
|
||||
self.hill = None
|
||||
|
||||
# parse data files and generate measurements
|
||||
for csvfile in data_files:
|
||||
tmp = np.genfromtxt(csvfile, comments='#')
|
||||
with open(csvfile) as datafile:
|
||||
head = [next(datafile) for x in range(2)]
|
||||
# extract concentration and unit from header
|
||||
# TODO: move unit to parameter
|
||||
# TODO: More error-proof header detection
|
||||
conc = head[0].strip('#').strip()
|
||||
unit = head[1].strip('#').strip()
|
||||
# split x and y data apart
|
||||
# first column is x data (time); following columns contain
|
||||
# replicates of y data (absorption, etc.)
|
||||
x = tmp[:, 0]
|
||||
y = tmp[:, 1:]
|
||||
# create new measurement and append to list
|
||||
measurement = Measurement(x, y, conc, unit, self)
|
||||
self.measurements.append(measurement)
|
||||
|
||||
# iterate over all measurements
|
||||
for m in self.measurements:
|
||||
# extract relevant data for kinetics calculation (concentration,
|
||||
# average slope and error)
|
||||
self.raw_kinetic_data['x'].append(m.concentration)
|
||||
self.raw_kinetic_data['y'].append(np.absolute(m.avg_slope))
|
||||
self.raw_kinetic_data['yerr'].append(m.avg_slope_err)
|
||||
|
||||
def plot_data(self):
|
||||
for m in self.measurements:
|
||||
m.plot()
|
||||
|
||||
def mm_kinetics_function(self, x, vmax, Km):
|
||||
v = (vmax*x)/(Km+x)
|
||||
return v
|
||||
|
||||
def hill_kinetics_function(self, x, vmax, Kprime, h):
|
||||
v = (vmax*(x**h))/(Kprime+(x**h))
|
||||
return v
|
||||
|
||||
def do_mm_kinetics(self):
|
||||
popt, pconv = optimize.curve_fit(self.mm_kinetics_function,
|
||||
self.raw_kinetic_data['x'],
|
||||
self.raw_kinetic_data['y'])
|
||||
|
||||
perr = np.sqrt(np.diag(pconv))
|
||||
vmax = popt[0]
|
||||
Km = popt[1]
|
||||
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
|
||||
|
||||
return {'vmax': float(vmax),
|
||||
'Km': float(Km),
|
||||
'perr': perr,
|
||||
'x': x}
|
||||
|
||||
def do_hill_kinetics(self):
|
||||
popt, pconv = optimize.curve_fit(self.hill_kinetics_function,
|
||||
self.raw_kinetic_data['x'],
|
||||
self.raw_kinetic_data['y'])
|
||||
|
||||
perr = np.sqrt(np.diag(pconv))
|
||||
vmax = popt[0]
|
||||
Kprime = popt[1]
|
||||
h = popt[2]
|
||||
|
||||
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
|
||||
|
||||
return {'vmax': float(vmax),
|
||||
'Kprime': float(Kprime),
|
||||
'perr': perr,
|
||||
'h': h,
|
||||
'x': x}
|
||||
|
||||
def plot_kinetics(self):
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel('c [mM]')
|
||||
ax.set_ylabel('dA/dt [Au/s]')
|
||||
ax.set_title('Kinetics')
|
||||
|
||||
ax.errorbar(self.raw_kinetic_data['x'],
|
||||
self.raw_kinetic_data['y'],
|
||||
yerr=self.raw_kinetic_data['yerr'],
|
||||
fmt='ok', ms=3, fillstyle='none', label="Data with error")
|
||||
# linestyle='None', marker='o', ms=3, fillstyle='none'
|
||||
self.mm = self.do_mm_kinetics()
|
||||
self.hill = self.do_hill_kinetics()
|
||||
|
||||
print(self.mm)
|
||||
print(self.hill)
|
||||
|
||||
ax.plot(self.mm['x'],
|
||||
(self.mm['vmax']*self.mm['x'])/(self.mm['Km']+self.mm['x']),
|
||||
'b-', label="Michaelis-Menten")
|
||||
ax.plot(self.hill['x'],
|
||||
((self.hill['vmax']*(self.hill['x']**self.hill['h'])) /
|
||||
(self.hill['Kprime'] + (self.hill['x']**self.hill['h']))),
|
||||
'g-', label="Hill")
|
||||
|
||||
ax.legend(loc='best', fancybox=True)
|
||||
plt.savefig('out/kinetics.png', bbox_inches='tight')
|
||||
plt.close(fig)
|
||||
|
||||
def write_data(self):
|
||||
|
||||
with open('out/results.csv', 'w', newline='\n') as csvfile:
|
||||
|
||||
writer = csv.writer(csvfile, dialect='excel-tab')
|
||||
writer.writerow(['# LINEAR FITS'])
|
||||
writer.writerow([])
|
||||
writer.writerow(['# concentration',
|
||||
'avg. slope',
|
||||
'slope std_err',
|
||||
'replicates (slope, intercept and r value)'])
|
||||
for m in self.measurements:
|
||||
row = [m.concentration, m.avg_slope, m.avg_slope_err]
|
||||
for r in m.replicates:
|
||||
row.append(r.fitresult['slope'])
|
||||
row.append(r.fitresult['intercept'])
|
||||
row.append(r.fitresult['r_value'])
|
||||
writer.writerow(row)
|
||||
|
||||
writer.writerow([])
|
||||
writer.writerow(['# MICHAELIS-MENTEN KINETICS'])
|
||||
writer.writerow(['# vmax', 'Km'])
|
||||
writer.writerow([self.mm['vmax'], self.mm['Km']])
|
||||
|
||||
writer.writerow(['# HILL KINETICS'])
|
||||
writer.writerow(['# vmax', 'Kprime', 'h'])
|
||||
writer.writerow([self.hill['vmax'], self.hill['Kprime'],
|
||||
self.hill['h']])
|
||||
|
||||
|
||||
def main():
|
||||
data_files = glob.glob('csv/*.csv')
|
||||
exp = Experiment(data_files, (10, 25))
|
||||
exp.plot_data()
|
||||
exp.plot_kinetics()
|
||||
exp.write_data()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Add table
Reference in a new issue