1
0
Fork 0
mirror of https://github.com/Athemis/pyKinetics.git synced 2025-04-05 06:56:02 +00:00

Reformat code using yapf

This commit is contained in:
Alexander Minges 2015-08-31 19:06:35 +02:00
parent 93751a2b3d
commit 4b3fb762fb
2 changed files with 50 additions and 57 deletions

View file

@ -36,7 +36,6 @@ except ImportError:
class ExperimentHelper(): class ExperimentHelper():
def __init__(self, experiment, logger): def __init__(self, experiment, logger):
self.exp = experiment self.exp = experiment
self.logger = logger self.logger = logger
@ -57,18 +56,20 @@ class ExperimentHelper():
ax.set_title(ax_title) ax.set_title(ax_title)
for r in m.replicates: for r in m.replicates:
ax.plot(r.x, r.y, linestyle='None', ax.plot(r.x,
marker='o', ms=3, fillstyle='none', r.y,
linestyle='None',
marker='o',
ms=3,
fillstyle='none',
label='replicate #{}'.format(r.num)) label='replicate #{}'.format(r.num))
y = self.linear_regression_function(r.fitresult['slope'], y = self.linear_regression_function(r.fitresult['slope'], r.x,
r.x,
r.fitresult['intercept']) r.fitresult['intercept'])
ax.plot(r.x, y, 'k-') ax.plot(r.x, y, 'k-')
ax.axvspan(m.xlim[0], m.xlim[1], facecolor='0.8', alpha=0.5) ax.axvspan(m.xlim[0], m.xlim[1], facecolor='0.8', alpha=0.5)
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.savefig('{}/fit_{}_{}.png'.format(outpath, plt.savefig('{}/fit_{}_{}.png'.format(outpath, m.concentration,
m.concentration,
m.concentration_unit), m.concentration_unit),
bbox_inches='tight') bbox_inches='tight')
plt.close(fig) plt.close(fig)
@ -82,18 +83,18 @@ class ExperimentHelper():
ax.errorbar(exp.raw_kinetic_data['x'], ax.errorbar(exp.raw_kinetic_data['x'],
exp.raw_kinetic_data['y'], exp.raw_kinetic_data['y'],
yerr=exp.raw_kinetic_data['yerr'], yerr=exp.raw_kinetic_data['yerr'],
fmt='ok', ms=3, fillstyle='none', label="Data with error") fmt='ok',
ms=3,
fillstyle='none',
label="Data with error")
if exp.mm: if exp.mm:
y = exp.mm_kinetics_function(exp.mm['x'], y = exp.mm_kinetics_function(exp.mm['x'], exp.mm['vmax'],
exp.mm['vmax'],
exp.mm['Km']) exp.mm['Km'])
ax.plot(exp.mm['x'], y, 'b-', label="Michaelis-Menten") ax.plot(exp.mm['x'], y, 'b-', label="Michaelis-Menten")
if exp.hill: if exp.hill:
y = exp.hill_kinetics_function(exp.hill['x'], y = exp.hill_kinetics_function(exp.hill['x'], exp.hill['vmax'],
exp.hill['vmax'], exp.hill['Kprime'], exp.hill['h'])
exp.hill['Kprime'],
exp.hill['h'])
ax.plot(exp.hill['x'], y, 'g-', label="Hill") ax.plot(exp.hill['x'], y, 'g-', label="Hill")
ax.legend(loc='best', fancybox=True) ax.legend(loc='best', fancybox=True)
@ -109,9 +110,7 @@ class ExperimentHelper():
writer = csv.writer(csvfile, dialect='excel-tab') writer = csv.writer(csvfile, dialect='excel-tab')
writer.writerow(['# LINEAR FITS']) writer.writerow(['# LINEAR FITS'])
writer.writerow([]) writer.writerow([])
writer.writerow(['# concentration', writer.writerow(['# concentration', 'avg. slope', 'slope std_err',
'avg. slope',
'slope std_err',
'replicates (slope, intercept and r value)']) 'replicates (slope, intercept and r value)'])
for m in exp.measurements: for m in exp.measurements:
row = [m.concentration, m.avg_slope, m.avg_slope_err] row = [m.concentration, m.avg_slope, m.avg_slope_err]
@ -151,9 +150,7 @@ def parse_arguments():
parser.add_argument('start', parser.add_argument('start',
type=np.float64, type=np.float64,
help='start of fitting window') help='start of fitting window')
parser.add_argument('end', parser.add_argument('end', type=np.float64, help='end of fitting window')
type=np.float64,
help='end of fitting window')
parser.add_argument('input', parser.add_argument('input',
type=str, type=str,
help='directory containing input files in csv format') help='directory containing input files in csv format')
@ -177,18 +174,18 @@ def initialize_logger():
formatter = ColoredFormatter(fmt, formatter = ColoredFormatter(fmt,
datefmt=None, datefmt=None,
reset=True, reset=True,
log_colors={'DEBUG': 'cyan', log_colors={
'INFO': 'green', 'DEBUG': 'cyan',
'WARNING': 'yellow', 'INFO': 'green',
'ERROR': 'red', 'WARNING': 'yellow',
'CRITICAL': 'red,bg_white'}, 'ERROR': 'red',
'CRITICAL': 'red,bg_white'
},
secondary_log_colors={}, secondary_log_colors={},
style='%') style='%')
else: else:
fmt = '%(levelname)-8s%(message)s' fmt = '%(levelname)-8s%(message)s'
formatter = logging.Formatter(fmt, formatter = logging.Formatter(fmt, datefmt=None, style='%')
datefmt=None,
style='%')
logging.captureWarnings(True) logging.captureWarnings(True)
logger = logging.getLogger('pyKinetics-cli') logger = logging.getLogger('pyKinetics-cli')
@ -274,5 +271,6 @@ def main():
logger.critical('CRITICAL: '.format(msg)) logger.critical('CRITICAL: '.format(msg))
raise ValueError(msg) raise ValueError(msg)
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View file

@ -21,8 +21,7 @@ class Replicate():
self.fitresult = self.fit() self.fitresult = self.fit()
def fit(self): def fit(self):
ind_min_max = np.where((self.x >= self.xlim[0]) & ind_min_max = np.where((self.x >= self.xlim[0]) & (self.x <= self.xlim[1]))
(self.x <= self.xlim[1]))
x_for_fit = np.take(self.x, ind_min_max) x_for_fit = np.take(self.x, ind_min_max)
y_for_fit = np.take(self.y, ind_min_max) y_for_fit = np.take(self.y, ind_min_max)
@ -32,12 +31,10 @@ class Replicate():
category=RuntimeWarning, category=RuntimeWarning,
message='invalid value encountered in sqrt') message='invalid value encountered in sqrt')
(slope, intercept, (slope, intercept, r_value, p_value, std_err
r_value, ) = stats.linregress(x_for_fit, y_for_fit)
p_value,
std_err) = stats.linregress(x_for_fit, y_for_fit)
r_squared = r_value**2 r_squared = r_value ** 2
conc = '{} {}'.format(self.owner.concentration, conc = '{} {}'.format(self.owner.concentration,
self.owner.concentration_unit) self.owner.concentration_unit)
@ -57,12 +54,14 @@ class Replicate():
'value for further calculations!') 'value for further calculations!')
self.logger.info(' intercept: {}'.format(slope)) self.logger.info(' intercept: {}'.format(slope))
return {'slope': slope, return {
'intercept': intercept, 'slope': slope,
'r_value': r_value, 'intercept': intercept,
'r_squared': r_squared, 'r_value': r_value,
'p_value': p_value, 'r_squared': r_squared,
'std_err': std_err} 'p_value': p_value,
'std_err': std_err
}
class Measurement(): class Measurement():
@ -86,8 +85,7 @@ class Measurement():
length_x, num_replicates = self.y.shape length_x, num_replicates = self.y.shape
for n in range(num_replicates): for n in range(num_replicates):
self.replicates.append(Replicate(n, self.replicates.append(Replicate(n, (self.x, self.y[:, n:n + 1]),
(self.x, self.y[:, n:n+1]),
self)) self))
for r in self.replicates: for r in self.replicates:
@ -141,9 +139,7 @@ class Experiment():
self.fit_to_replicates = fit_to_replicates self.fit_to_replicates = fit_to_replicates
# dictionary to store data for the kinetics calculation # dictionary to store data for the kinetics calculation
self.raw_kinetic_data = {'x': [], self.raw_kinetic_data = {'x': [], 'y': [], 'yerr': []}
'y': [],
'yerr': []}
self.xlim = xlim self.xlim = xlim
# parse data files and generate measurements # parse data files and generate measurements
@ -196,11 +192,11 @@ class Experiment():
m.plot(outpath) m.plot(outpath)
def mm_kinetics_function(self, x, vmax, Km): def mm_kinetics_function(self, x, vmax, Km):
v = (vmax*x)/(Km+x) v = (vmax * x) / (Km + x)
return v return v
def hill_kinetics_function(self, x, vmax, Kprime, h): def hill_kinetics_function(self, x, vmax, Kprime, h):
v = (vmax*(x**h))/(Kprime+(x**h)) v = (vmax * (x ** h)) / (Kprime + (x ** h))
return v return v
def do_mm_kinetics(self): def do_mm_kinetics(self):
@ -218,10 +214,7 @@ class Experiment():
self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0])) self.logger.info(' v_max: {} ± {}'.format(vmax, perr[0]))
self.logger.info(' Km: {} ± {}'.format(Km, perr[1])) self.logger.info(' Km: {} ± {}'.format(Km, perr[1]))
return {'vmax': float(vmax), return {'vmax': float(vmax), 'Km': float(Km), 'perr': perr, 'x': x}
'Km': float(Km),
'perr': perr,
'x': x}
except: except:
msg = 'Calculation of Michaelis-Menten kinetics failed!' msg = 'Calculation of Michaelis-Menten kinetics failed!'
if self.logger: if self.logger:
@ -248,11 +241,13 @@ class Experiment():
self.logger.info(' K_prime: {} ± {}'.format(Kprime, perr[1])) self.logger.info(' K_prime: {} ± {}'.format(Kprime, perr[1]))
self.logger.info(' h: {} ± {}'.format(h, perr[2])) self.logger.info(' h: {} ± {}'.format(h, perr[2]))
return {'vmax': float(vmax), return {
'Kprime': float(Kprime), 'vmax': float(vmax),
'perr': perr, 'Kprime': float(Kprime),
'h': h, 'perr': perr,
'x': x} 'h': h,
'x': x
}
except: except:
msg = 'Calculation of Hill kinetics failed!' msg = 'Calculation of Hill kinetics failed!'
if self.logger: if self.logger: