mirror of
https://github.com/Athemis/pyKinetics.git
synced 2025-04-05 06:56:02 +00:00
Split in library and cli
This commit is contained in:
parent
7bbb368499
commit
7a943cb945
2 changed files with 141 additions and 76 deletions
65
analyze-cli.py
Executable file
65
analyze-cli.py
Executable file
|
@ -0,0 +1,65 @@
|
||||||
|
#!/usr/bin/python
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import csv
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import libkinetics
|
||||||
|
|
||||||
|
|
||||||
|
def parse_arguments():
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('-v',
|
||||||
|
'--verbose',
|
||||||
|
action='store_true',
|
||||||
|
help='increase output verbosity')
|
||||||
|
parser.add_argument('-wh',
|
||||||
|
'--with_hill',
|
||||||
|
action='store_true',
|
||||||
|
help='compute additional kinetics using Hill equation')
|
||||||
|
parser.add_argument('input',
|
||||||
|
type=str,
|
||||||
|
help='directory containing input files in csv format')
|
||||||
|
parser.add_argument('output',
|
||||||
|
type=str,
|
||||||
|
help='results will be written to this directory')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# parse command line arguments
|
||||||
|
args = parse_arguments()
|
||||||
|
if args.with_hill:
|
||||||
|
do_hill = args.with_hill
|
||||||
|
else:
|
||||||
|
do_hill = False
|
||||||
|
try:
|
||||||
|
input_path = Path(args.input).resolve()
|
||||||
|
except FileNotFoundError:
|
||||||
|
print('Path containing input data not found: {}'.format(args.input))
|
||||||
|
raise
|
||||||
|
try:
|
||||||
|
output_path = Path(args.output).resolve()
|
||||||
|
except FileNotFoundError:
|
||||||
|
print('Path for writing results not found: {}'.format(args.output))
|
||||||
|
raise
|
||||||
|
|
||||||
|
if output_path.is_dir():
|
||||||
|
if input_path.is_dir():
|
||||||
|
data_files = sorted(input_path.glob('**/*.csv'))
|
||||||
|
exp = libkinetics.Experiment(data_files, (10, 25), do_hill)
|
||||||
|
exp.plot_data(str(output_path))
|
||||||
|
exp.plot_kinetics(str(output_path))
|
||||||
|
exp.write_data(str(output_path))
|
||||||
|
else:
|
||||||
|
raise ValueError('{} is not a directory!'.format(input_path))
|
||||||
|
else:
|
||||||
|
raise ValueError('{} is not a directory!'.format(output_path))
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
152
analyze.py → libkinetics/__init__.py
Executable file → Normal file
152
analyze.py → libkinetics/__init__.py
Executable file → Normal file
|
@ -3,11 +3,11 @@
|
||||||
from scipy import stats, optimize
|
from scipy import stats, optimize
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import glob
|
|
||||||
import csv
|
import csv
|
||||||
|
|
||||||
|
|
||||||
class Replicate():
|
class Replicate():
|
||||||
|
|
||||||
def __init__(self, x, y, owner):
|
def __init__(self, x, y, owner):
|
||||||
self.x = x
|
self.x = x
|
||||||
self.y = y
|
self.y = y
|
||||||
|
@ -59,7 +59,7 @@ class Measurement():
|
||||||
self.avg_slope = np.average(self.slopes)
|
self.avg_slope = np.average(self.slopes)
|
||||||
self.avg_slope_err = np.std(self.slopes)
|
self.avg_slope_err = np.std(self.slopes)
|
||||||
|
|
||||||
def plot(self):
|
def plot(self, outpath):
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.set_xlabel('Time [s]')
|
ax.set_xlabel('Time [s]')
|
||||||
ax.set_ylabel('Absorption (340 nm) [Au]')
|
ax.set_ylabel('Absorption (340 nm) [Au]')
|
||||||
|
@ -73,8 +73,9 @@ class Measurement():
|
||||||
'k-')
|
'k-')
|
||||||
ax.axvspan(self.xlim[0], self.xlim[1], facecolor='0.8', alpha=0.5)
|
ax.axvspan(self.xlim[0], self.xlim[1], facecolor='0.8', alpha=0.5)
|
||||||
|
|
||||||
plt.savefig('out/fit_{}_{}.png'.format(self.concentration,
|
plt.savefig('{}/fit_{}_{}.png'.format(outpath,
|
||||||
self.concentration_unit),
|
self.concentration,
|
||||||
|
self.concentration_unit),
|
||||||
bbox_inches='tight')
|
bbox_inches='tight')
|
||||||
plt.close(fig)
|
plt.close(fig)
|
||||||
|
|
||||||
|
@ -88,7 +89,7 @@ class Measurement():
|
||||||
|
|
||||||
class Experiment():
|
class Experiment():
|
||||||
|
|
||||||
def __init__(self, data_files, xlim):
|
def __init__(self, data_files, xlim, do_hill=False):
|
||||||
|
|
||||||
# collction of indepentend measurements
|
# collction of indepentend measurements
|
||||||
self.measurements = []
|
self.measurements = []
|
||||||
|
@ -97,15 +98,11 @@ class Experiment():
|
||||||
'y': [],
|
'y': [],
|
||||||
'yerr': []}
|
'yerr': []}
|
||||||
self.xlim = xlim
|
self.xlim = xlim
|
||||||
|
|
||||||
# variables to store calculated Michaelis-Menten and Hill kinetics
|
|
||||||
self.mm = None
|
|
||||||
self.hill = None
|
|
||||||
|
|
||||||
# parse data files and generate measurements
|
# parse data files and generate measurements
|
||||||
for csvfile in data_files:
|
for csvfile in data_files:
|
||||||
tmp = np.genfromtxt(csvfile, comments='#')
|
tmp = np.genfromtxt(str(csvfile), comments='#')
|
||||||
with open(csvfile) as datafile:
|
with open(str(csvfile)) as datafile:
|
||||||
head = [next(datafile) for x in range(2)]
|
head = [next(datafile) for x in range(2)]
|
||||||
# extract concentration and unit from header
|
# extract concentration and unit from header
|
||||||
# TODO: move unit to parameter
|
# TODO: move unit to parameter
|
||||||
|
@ -113,25 +110,34 @@ class Experiment():
|
||||||
conc = head[0].strip('#').strip()
|
conc = head[0].strip('#').strip()
|
||||||
unit = head[1].strip('#').strip()
|
unit = head[1].strip('#').strip()
|
||||||
# split x and y data apart
|
# split x and y data apart
|
||||||
# first column is x data (time); following columns contain
|
# first column is x data (time); following columns contain
|
||||||
# replicates of y data (absorption, etc.)
|
# replicates of y data (absorption, etc.)
|
||||||
x = tmp[:, 0]
|
x = tmp[:, 0]
|
||||||
y = tmp[:, 1:]
|
y = tmp[:, 1:]
|
||||||
# create new measurement and append to list
|
# create new measurement and append to list
|
||||||
measurement = Measurement(x, y, conc, unit, self)
|
measurement = Measurement(x, y, conc, unit, self)
|
||||||
self.measurements.append(measurement)
|
self.measurements.append(measurement)
|
||||||
|
|
||||||
# iterate over all measurements
|
# iterate over all measurements
|
||||||
for m in self.measurements:
|
for m in self.measurements:
|
||||||
# extract relevant data for kinetics calculation (concentration,
|
# extract relevant data for kinetics calculation (concentration,
|
||||||
# average slope and error)
|
# average slope and error)
|
||||||
self.raw_kinetic_data['x'].append(m.concentration)
|
self.raw_kinetic_data['x'].append(m.concentration)
|
||||||
self.raw_kinetic_data['y'].append(np.absolute(m.avg_slope))
|
self.raw_kinetic_data['y'].append(np.absolute(m.avg_slope))
|
||||||
self.raw_kinetic_data['yerr'].append(m.avg_slope_err)
|
self.raw_kinetic_data['yerr'].append(m.avg_slope_err)
|
||||||
|
|
||||||
def plot_data(self):
|
# calculate kinetics
|
||||||
|
self.mm = self.do_mm_kinetics()
|
||||||
|
if do_hill:
|
||||||
|
self.hill = self.do_hill_kinetics()
|
||||||
|
else:
|
||||||
|
self.hill = None
|
||||||
|
|
||||||
|
def plot_data(self, outpath):
|
||||||
|
# iterate over all measurements
|
||||||
for m in self.measurements:
|
for m in self.measurements:
|
||||||
m.plot()
|
# plot each measurement
|
||||||
|
m.plot(outpath)
|
||||||
|
|
||||||
def mm_kinetics_function(self, x, vmax, Km):
|
def mm_kinetics_function(self, x, vmax, Km):
|
||||||
v = (vmax*x)/(Km+x)
|
v = (vmax*x)/(Km+x)
|
||||||
|
@ -142,39 +148,47 @@ class Experiment():
|
||||||
return v
|
return v
|
||||||
|
|
||||||
def do_mm_kinetics(self):
|
def do_mm_kinetics(self):
|
||||||
popt, pconv = optimize.curve_fit(self.mm_kinetics_function,
|
try:
|
||||||
self.raw_kinetic_data['x'],
|
popt, pconv = optimize.curve_fit(self.mm_kinetics_function,
|
||||||
self.raw_kinetic_data['y'])
|
self.raw_kinetic_data['x'],
|
||||||
|
self.raw_kinetic_data['y'])
|
||||||
|
|
||||||
perr = np.sqrt(np.diag(pconv))
|
perr = np.sqrt(np.diag(pconv))
|
||||||
vmax = popt[0]
|
vmax = popt[0]
|
||||||
Km = popt[1]
|
Km = popt[1]
|
||||||
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
|
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
|
||||||
|
|
||||||
return {'vmax': float(vmax),
|
return {'vmax': float(vmax),
|
||||||
'Km': float(Km),
|
'Km': float(Km),
|
||||||
'perr': perr,
|
'perr': perr,
|
||||||
'x': x}
|
'x': x}
|
||||||
|
except:
|
||||||
|
print('Calculation of Hill kinetics failed!')
|
||||||
|
return None
|
||||||
|
|
||||||
def do_hill_kinetics(self):
|
def do_hill_kinetics(self):
|
||||||
popt, pconv = optimize.curve_fit(self.hill_kinetics_function,
|
try:
|
||||||
self.raw_kinetic_data['x'],
|
popt, pconv = optimize.curve_fit(self.hill_kinetics_function,
|
||||||
self.raw_kinetic_data['y'])
|
self.raw_kinetic_data['x'],
|
||||||
|
self.raw_kinetic_data['y'])
|
||||||
|
|
||||||
perr = np.sqrt(np.diag(pconv))
|
perr = np.sqrt(np.diag(pconv))
|
||||||
vmax = popt[0]
|
vmax = popt[0]
|
||||||
Kprime = popt[1]
|
Kprime = popt[1]
|
||||||
h = popt[2]
|
h = popt[2]
|
||||||
|
|
||||||
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
|
x = np.arange(0, max(self.raw_kinetic_data['x']), 0.0001)
|
||||||
|
|
||||||
return {'vmax': float(vmax),
|
return {'vmax': float(vmax),
|
||||||
'Kprime': float(Kprime),
|
'Kprime': float(Kprime),
|
||||||
'perr': perr,
|
'perr': perr,
|
||||||
'h': h,
|
'h': h,
|
||||||
'x': x}
|
'x': x}
|
||||||
|
except:
|
||||||
|
print('Calculation of Hill kinetics failed!')
|
||||||
|
return None
|
||||||
|
|
||||||
def plot_kinetics(self):
|
def plot_kinetics(self, outpath):
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.set_xlabel('c [mM]')
|
ax.set_xlabel('c [mM]')
|
||||||
ax.set_ylabel('dA/dt [Au/s]')
|
ax.set_ylabel('dA/dt [Au/s]')
|
||||||
|
@ -184,28 +198,24 @@ class Experiment():
|
||||||
self.raw_kinetic_data['y'],
|
self.raw_kinetic_data['y'],
|
||||||
yerr=self.raw_kinetic_data['yerr'],
|
yerr=self.raw_kinetic_data['yerr'],
|
||||||
fmt='ok', ms=3, fillstyle='none', label="Data with error")
|
fmt='ok', ms=3, fillstyle='none', label="Data with error")
|
||||||
# linestyle='None', marker='o', ms=3, fillstyle='none'
|
|
||||||
self.mm = self.do_mm_kinetics()
|
|
||||||
self.hill = self.do_hill_kinetics()
|
|
||||||
|
|
||||||
print(self.mm)
|
if self.mm:
|
||||||
print(self.hill)
|
ax.plot(self.mm['x'],
|
||||||
|
(self.mm['vmax']*self.mm['x'])/(self.mm['Km']+self.mm['x']), 'b-', label="Michaelis-Menten")
|
||||||
ax.plot(self.mm['x'],
|
if self.hill:
|
||||||
(self.mm['vmax']*self.mm['x'])/(self.mm['Km']+self.mm['x']),
|
ax.plot(self.hill['x'],
|
||||||
'b-', label="Michaelis-Menten")
|
((self.hill['vmax']*(self.hill['x']**self.hill['h'])) /
|
||||||
ax.plot(self.hill['x'],
|
(self.hill['Kprime'] + (self.hill['x']**self.hill['h']))), 'g-', label="Hill")
|
||||||
((self.hill['vmax']*(self.hill['x']**self.hill['h'])) /
|
|
||||||
(self.hill['Kprime'] + (self.hill['x']**self.hill['h']))),
|
|
||||||
'g-', label="Hill")
|
|
||||||
|
|
||||||
ax.legend(loc='best', fancybox=True)
|
ax.legend(loc='best', fancybox=True)
|
||||||
plt.savefig('out/kinetics.png', bbox_inches='tight')
|
plt.savefig('{}/kinetics.png'.format(outpath), bbox_inches='tight')
|
||||||
plt.close(fig)
|
plt.close(fig)
|
||||||
|
|
||||||
def write_data(self):
|
def write_data(self, outpath):
|
||||||
|
|
||||||
with open('out/results.csv', 'w', newline='\n') as csvfile:
|
with open('{}/results.csv'.format(outpath),
|
||||||
|
'w',
|
||||||
|
newline='\n') as csvfile:
|
||||||
|
|
||||||
writer = csv.writer(csvfile, dialect='excel-tab')
|
writer = csv.writer(csvfile, dialect='excel-tab')
|
||||||
writer.writerow(['# LINEAR FITS'])
|
writer.writerow(['# LINEAR FITS'])
|
||||||
|
@ -223,22 +233,12 @@ class Experiment():
|
||||||
writer.writerow(row)
|
writer.writerow(row)
|
||||||
|
|
||||||
writer.writerow([])
|
writer.writerow([])
|
||||||
writer.writerow(['# MICHAELIS-MENTEN KINETICS'])
|
if self.mm:
|
||||||
writer.writerow(['# vmax', 'Km'])
|
writer.writerow(['# MICHAELIS-MENTEN KINETICS'])
|
||||||
writer.writerow([self.mm['vmax'], self.mm['Km']])
|
writer.writerow(['# vmax', 'Km'])
|
||||||
|
writer.writerow([self.mm['vmax'], self.mm['Km']])
|
||||||
writer.writerow(['# HILL KINETICS'])
|
if self.hill:
|
||||||
writer.writerow(['# vmax', 'Kprime', 'h'])
|
writer.writerow(['# HILL KINETICS'])
|
||||||
writer.writerow([self.hill['vmax'], self.hill['Kprime'],
|
writer.writerow(['# vmax', 'Kprime', 'h'])
|
||||||
self.hill['h']])
|
writer.writerow([self.hill['vmax'], self.hill['Kprime'],
|
||||||
|
self.hill['h']])
|
||||||
|
|
||||||
def main():
|
|
||||||
data_files = glob.glob('csv/*.csv')
|
|
||||||
exp = Experiment(data_files, (10, 25))
|
|
||||||
exp.plot_data()
|
|
||||||
exp.plot_kinetics()
|
|
||||||
exp.write_data()
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
Loading…
Add table
Reference in a new issue