mirror of
https://github.com/Athemis/pyKinetics.git
synced 2025-04-05 06:56:02 +00:00
Split in library and cli
This commit is contained in:
parent
7bbb368499
commit
7a943cb945
2 changed files with 141 additions and 76 deletions
65
analyze-cli.py
Executable file
65
analyze-cli.py
Executable file
|
@ -0,0 +1,65 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import csv
|
||||
from pathlib import Path
|
||||
|
||||
import libkinetics
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-v',
|
||||
'--verbose',
|
||||
action='store_true',
|
||||
help='increase output verbosity')
|
||||
parser.add_argument('-wh',
|
||||
'--with_hill',
|
||||
action='store_true',
|
||||
help='compute additional kinetics using Hill equation')
|
||||
parser.add_argument('input',
|
||||
type=str,
|
||||
help='directory containing input files in csv format')
|
||||
parser.add_argument('output',
|
||||
type=str,
|
||||
help='results will be written to this directory')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
# parse command line arguments
|
||||
args = parse_arguments()
|
||||
if args.with_hill:
|
||||
do_hill = args.with_hill
|
||||
else:
|
||||
do_hill = False
|
||||
try:
|
||||
input_path = Path(args.input).resolve()
|
||||
except FileNotFoundError:
|
||||
print('Path containing input data not found: {}'.format(args.input))
|
||||
raise
|
||||
try:
|
||||
output_path = Path(args.output).resolve()
|
||||
except FileNotFoundError:
|
||||
print('Path for writing results not found: {}'.format(args.output))
|
||||
raise
|
||||
|
||||
if output_path.is_dir():
|
||||
if input_path.is_dir():
|
||||
data_files = sorted(input_path.glob('**/*.csv'))
|
||||
exp = libkinetics.Experiment(data_files, (10, 25), do_hill)
|
||||
exp.plot_data(str(output_path))
|
||||
exp.plot_kinetics(str(output_path))
|
||||
exp.write_data(str(output_path))
|
||||
else:
|
||||
raise ValueError('{} is not a directory!'.format(input_path))
|
||||
else:
|
||||
raise ValueError('{} is not a directory!'.format(output_path))
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
76
analyze.py → libkinetics/__init__.py
Executable file → Normal file
76
analyze.py → libkinetics/__init__.py
Executable file → Normal file
|
@ -3,11 +3,11 @@
|
|||
from scipy import stats, optimize
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import glob
|
||||
import csv
|
||||
|
||||
|
||||
class Replicate():
|
||||
|
||||
def __init__(self, x, y, owner):
|
||||
self.x = x
|
||||
self.y = y
|
||||
|
@ -59,7 +59,7 @@ class Measurement():
|
|||
self.avg_slope = np.average(self.slopes)
|
||||
self.avg_slope_err = np.std(self.slopes)
|
||||
|
||||
def plot(self):
|
||||
def plot(self, outpath):
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Absorption (340 nm) [Au]')
|
||||
|
@ -73,7 +73,8 @@ class Measurement():
|
|||
'k-')
|
||||
ax.axvspan(self.xlim[0], self.xlim[1], facecolor='0.8', alpha=0.5)
|
||||
|
||||
plt.savefig('out/fit_{}_{}.png'.format(self.concentration,
|
||||
plt.savefig('{}/fit_{}_{}.png'.format(outpath,
|
||||
self.concentration,
|
||||
self.concentration_unit),
|
||||
bbox_inches='tight')
|
||||
plt.close(fig)
|
||||
|
@ -88,7 +89,7 @@ class Measurement():
|
|||
|
||||
class Experiment():
|
||||
|
||||
def __init__(self, data_files, xlim):
|
||||
def __init__(self, data_files, xlim, do_hill=False):
|
||||
|
||||
# collction of indepentend measurements
|
||||
self.measurements = []
|
||||
|
@ -98,14 +99,10 @@ class Experiment():
|
|||
'yerr': []}
|
||||
self.xlim = xlim
|
||||
|
||||
# variables to store calculated Michaelis-Menten and Hill kinetics
|
||||
self.mm = None
|
||||
self.hill = None
|
||||
|
||||
# parse data files and generate measurements
|
||||
for csvfile in data_files:
|
||||
tmp = np.genfromtxt(csvfile, comments='#')
|
||||
with open(csvfile) as datafile:
|
||||
tmp = np.genfromtxt(str(csvfile), comments='#')
|
||||
with open(str(csvfile)) as datafile:
|
||||
head = [next(datafile) for x in range(2)]
|
||||
# extract concentration and unit from header
|
||||
# TODO: move unit to parameter
|
||||
|
@ -129,9 +126,18 @@ class Experiment():
|
|||
self.raw_kinetic_data['y'].append(np.absolute(m.avg_slope))
|
||||
self.raw_kinetic_data['yerr'].append(m.avg_slope_err)
|
||||
|
||||
def plot_data(self):
|
||||
# calculate kinetics
|
||||
self.mm = self.do_mm_kinetics()
|
||||
if do_hill:
|
||||
self.hill = self.do_hill_kinetics()
|
||||
else:
|
||||
self.hill = None
|
||||
|
||||
def plot_data(self, outpath):
|
||||
# iterate over all measurements
|
||||
for m in self.measurements:
|
||||
m.plot()
|
||||
# plot each measurement
|
||||
m.plot(outpath)
|
||||
|
||||
def mm_kinetics_function(self, x, vmax, Km):
|
||||
v = (vmax*x)/(Km+x)
|
||||
|
@ -142,6 +148,7 @@ class Experiment():
|
|||
return v
|
||||
|
||||
def do_mm_kinetics(self):
|
||||
try:
|
||||
popt, pconv = optimize.curve_fit(self.mm_kinetics_function,
|
||||
self.raw_kinetic_data['x'],
|
||||
self.raw_kinetic_data['y'])
|
||||
|
@ -155,8 +162,12 @@ class Experiment():
|
|||
'Km': float(Km),
|
||||
'perr': perr,
|
||||
'x': x}
|
||||
except:
|
||||
print('Calculation of Hill kinetics failed!')
|
||||
return None
|
||||
|
||||
def do_hill_kinetics(self):
|
||||
try:
|
||||
popt, pconv = optimize.curve_fit(self.hill_kinetics_function,
|
||||
self.raw_kinetic_data['x'],
|
||||
self.raw_kinetic_data['y'])
|
||||
|
@ -173,8 +184,11 @@ class Experiment():
|
|||
'perr': perr,
|
||||
'h': h,
|
||||
'x': x}
|
||||
except:
|
||||
print('Calculation of Hill kinetics failed!')
|
||||
return None
|
||||
|
||||
def plot_kinetics(self):
|
||||
def plot_kinetics(self, outpath):
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel('c [mM]')
|
||||
ax.set_ylabel('dA/dt [Au/s]')
|
||||
|
@ -184,28 +198,24 @@ class Experiment():
|
|||
self.raw_kinetic_data['y'],
|
||||
yerr=self.raw_kinetic_data['yerr'],
|
||||
fmt='ok', ms=3, fillstyle='none', label="Data with error")
|
||||
# linestyle='None', marker='o', ms=3, fillstyle='none'
|
||||
self.mm = self.do_mm_kinetics()
|
||||
self.hill = self.do_hill_kinetics()
|
||||
|
||||
print(self.mm)
|
||||
print(self.hill)
|
||||
|
||||
if self.mm:
|
||||
ax.plot(self.mm['x'],
|
||||
(self.mm['vmax']*self.mm['x'])/(self.mm['Km']+self.mm['x']),
|
||||
'b-', label="Michaelis-Menten")
|
||||
(self.mm['vmax']*self.mm['x'])/(self.mm['Km']+self.mm['x']), 'b-', label="Michaelis-Menten")
|
||||
if self.hill:
|
||||
ax.plot(self.hill['x'],
|
||||
((self.hill['vmax']*(self.hill['x']**self.hill['h'])) /
|
||||
(self.hill['Kprime'] + (self.hill['x']**self.hill['h']))),
|
||||
'g-', label="Hill")
|
||||
(self.hill['Kprime'] + (self.hill['x']**self.hill['h']))), 'g-', label="Hill")
|
||||
|
||||
ax.legend(loc='best', fancybox=True)
|
||||
plt.savefig('out/kinetics.png', bbox_inches='tight')
|
||||
plt.savefig('{}/kinetics.png'.format(outpath), bbox_inches='tight')
|
||||
plt.close(fig)
|
||||
|
||||
def write_data(self):
|
||||
def write_data(self, outpath):
|
||||
|
||||
with open('out/results.csv', 'w', newline='\n') as csvfile:
|
||||
with open('{}/results.csv'.format(outpath),
|
||||
'w',
|
||||
newline='\n') as csvfile:
|
||||
|
||||
writer = csv.writer(csvfile, dialect='excel-tab')
|
||||
writer.writerow(['# LINEAR FITS'])
|
||||
|
@ -223,22 +233,12 @@ class Experiment():
|
|||
writer.writerow(row)
|
||||
|
||||
writer.writerow([])
|
||||
if self.mm:
|
||||
writer.writerow(['# MICHAELIS-MENTEN KINETICS'])
|
||||
writer.writerow(['# vmax', 'Km'])
|
||||
writer.writerow([self.mm['vmax'], self.mm['Km']])
|
||||
|
||||
if self.hill:
|
||||
writer.writerow(['# HILL KINETICS'])
|
||||
writer.writerow(['# vmax', 'Kprime', 'h'])
|
||||
writer.writerow([self.hill['vmax'], self.hill['Kprime'],
|
||||
self.hill['h']])
|
||||
|
||||
|
||||
def main():
|
||||
data_files = glob.glob('csv/*.csv')
|
||||
exp = Experiment(data_files, (10, 25))
|
||||
exp.plot_data()
|
||||
exp.plot_kinetics()
|
||||
exp.write_data()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Add table
Reference in a new issue